These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1709105)

  • 21. Cell-cell contact: cooperating clusters of actin and cadherin.
    Kovacs EM; Yap AS
    Curr Biol; 2008 Aug; 18(15):R667-R669. PubMed ID: 18682211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pole cell formation in Drosophila melanogaster.
    Swanson MM; Poodry CA
    Dev Biol; 1980 Mar; 75(2):419-30. PubMed ID: 6768631
    [No Abstract]   [Full Text] [Related]  

  • 23. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis.
    Hiraoka Y; Dernburg AF; Parmelee SJ; Rykowski MC; Agard DA; Sedat JW
    J Cell Biol; 1993 Feb; 120(3):591-600. PubMed ID: 8425892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Remodeling of nuclear architecture during the cell cycle in Drosophila embryos.
    Johansen KM; Johansen J; Baek KH; Jin Y
    J Cell Biochem; 1996 Dec; 63(3):268-79. PubMed ID: 8913878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos.
    Royou A; Field C; Sisson JC; Sullivan W; Karess R
    Mol Biol Cell; 2004 Feb; 15(2):838-50. PubMed ID: 14657248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maternal effect mutations of the sponge locus affect actin cytoskeletal rearrangements in Drosophila melanogaster embryos.
    Postner MA; Miller KG; Wieschaus EF
    J Cell Biol; 1992 Dec; 119(5):1205-18. PubMed ID: 1447298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo.
    Holly RM; Mavor LM; Zuo Z; Blankenship JT
    Development; 2015 Jul; 142(13):2316-28. PubMed ID: 26092850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The centrosome is a dynamic structure that ejects PCM flares.
    Megraw TL; Kilaru S; Turner FR; Kaufman TC
    J Cell Sci; 2002 Dec; 115(Pt 23):4707-18. PubMed ID: 12415014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos.
    Gupta P; Martin R; Knölker HJ; Nihalani D; Kumar Sinha D
    PLoS One; 2017; 12(7):e0180301. PubMed ID: 28678859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of cell movements and fate mapping during early embryogenesis in Drosophila melanogaster.
    Underwood EM; Turner FR; Mahowald AP
    Dev Biol; 1980 Feb; 74(2):286-301. PubMed ID: 6768626
    [No Abstract]   [Full Text] [Related]  

  • 31. Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization.
    Adam JC; Pringle JR; Peifer M
    Mol Biol Cell; 2000 Sep; 11(9):3123-35. PubMed ID: 10982405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of F-actin during cleavage of the Drosophila syncytial blastoderm.
    Warn RM; Magrath R; Webb S
    J Cell Biol; 1984 Jan; 98(1):156-62. PubMed ID: 6423648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron microscopic visualization of actin filaments in the early embryo of Drosophila melanogaster: the use of phalloidin and tropomyosin.
    Katoh K; Ichikawa H; Ishikawa H
    J Electron Microsc (Tokyo); 1991 Feb; 40(1):70-5. PubMed ID: 1907635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila spectrin: the membrane skeleton during embryogenesis.
    Pesacreta TC; Byers TJ; Dubreuil R; Kiehart DP; Branton D
    J Cell Biol; 1989 May; 108(5):1697-709. PubMed ID: 2497103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization.
    Stevenson VA; Kramer J; Kuhn J; Theurkauf WE
    Nat Cell Biol; 2001 Jan; 3(1):68-75. PubMed ID: 11146628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics.
    Cytrynbaum EN; Sommi P; Brust-Mascher I; Scholey JM; Mogilner A
    Mol Biol Cell; 2005 Oct; 16(10):4967-81. PubMed ID: 16079179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The concentration of Nuf, a Rab11 effector, at the microtubule-organizing center is cell cycle regulated, dynein-dependent, and coincides with furrow formation.
    Riggs B; Fasulo B; Royou A; Mische S; Cao J; Hays TS; Sullivan W
    Mol Biol Cell; 2007 Sep; 18(9):3313-22. PubMed ID: 17581858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization and possible functions of Drosophila septins.
    Fares H; Peifer M; Pringle JR
    Mol Biol Cell; 1995 Dec; 6(12):1843-59. PubMed ID: 8590810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids.
    Doubrovinski K; Swan M; Polyakov O; Wieschaus EF
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1051-1056. PubMed ID: 28096360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collision of Expanding Actin Caps with Actomyosin Borders for Cortical Bending and Mitotic Rounding in a Syncytium.
    Zhang Y; Yu JC; Jiang T; Fernandez-Gonzalez R; Harris TJC
    Dev Cell; 2018 Jun; 45(5):551-564.e4. PubMed ID: 29804877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.