BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 17091372)

  • 1. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate.
    Petersson A; Lidén G
    Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae.
    Talebnia F; Taherzadeh MJ
    J Biotechnol; 2006 Sep; 125(3):377-84. PubMed ID: 16621080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch cultivation of Mucor indicus in dilute-acid lignocellulosic hydrolyzate for ethanol production.
    Karimi K; Brandberg T; Edebo L; Taherzadeh MJ
    Biotechnol Lett; 2005 Sep; 27(18):1395-400. PubMed ID: 16215856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus.
    Sues A; Millati R; Edebo L; Taherzadeh MJ
    FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation.
    Brandberg T; Sanandaji N; Gustafsson L; Franzén CJ
    Biotechnol Prog; 2005; 21(4):1093-101. PubMed ID: 16080688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol.
    Nilsson A; Taherzadeh MJ; Lidén G
    J Biotechnol; 2001 Jul; 89(1):41-53. PubMed ID: 11472798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process.
    Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate.
    Yan F; Bai F; Tian S; Zhang J; Zhang Z; Yang X
    Appl Biochem Biotechnol; 2009 Jun; 157(3):473-82. PubMed ID: 18751961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of lignocellulosic hydrolyzate using a submerged membrane bioreactor at high dilution rates.
    Ylitervo P; Doyen W; Taherzadeh MJ
    Bioresour Technol; 2014 Jul; 164():64-9. PubMed ID: 24836707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.
    Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line estimation of sugar concentration for control of fed-batch fermentation of lignocellulosic hydrolyzates by Saccharomyces cerevisiae.
    Nilsson A; Taherzadeh MJ; Lidén G
    Bioprocess Biosyst Eng; 2002 Sep; 25(3):183-91. PubMed ID: 14508677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae.
    Roca C; Olsson L
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):560-3. PubMed ID: 12536256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of white-rot and soft-rot fungi increasing ethanol production from spent sulfite liquor in co-culture with Saccharomyces cerevisiae.
    Holmgren M; Sellstedt A
    J Appl Microbiol; 2008 Jul; 105(1):134-40. PubMed ID: 18248376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass.
    Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S
    Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.