BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 170914)

  • 1. Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots.
    Miflin BJ; Lea PJ
    Biochem J; 1975 Aug; 149(2):403-9. PubMed ID: 170914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen assimilation in Rhodopseudomonas acidophila.
    Herbert RA; Siefert E; Pfennig N
    Arch Microbiol; 1978 Oct; 119(1):1-5. PubMed ID: 31145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonia assimilation by rhizobium cultures and bacteroids.
    Brown CM; Dilworth MJ
    J Gen Microbiol; 1975 Jan; 86(1):39-48. PubMed ID: 234505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by
    Yoneyama T; Suzuki A
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33023108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 15N Tracing Studies on In Vitro Reactions of Ferredoxin-Dependent Nitrite Reductase and Glutamate Synthase Using Reconstituted Electron Donation Systems.
    Yoneyama T; Fujimori T; Yanagisawa S; Hase T; Suzuki A
    Plant Cell Physiol; 2015 Jun; 56(6):1154-61. PubMed ID: 25745028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ω-Amidase: an underappreciated, but important enzyme in L-glutamine and L-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases.
    Cooper AJ; Shurubor YI; Dorai T; Pinto JT; Isakova EP; Deryabina YI; Denton TT; Krasnikov BF
    Amino Acids; 2016 Jan; 48(1):1-20. PubMed ID: 26259930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine.
    Neilson AH; Nordlund S
    J Gen Microbiol; 1975 Nov; 91(1):53-62. PubMed ID: 811763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen metabolism of asparagine and glutamate in Vero cells studied by (1)H/ (15)N NMR spectroscopy.
    Huang H; Yu Y; Yi X; Zhang Y
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):427-36. PubMed ID: 17952433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of
    Yoneyama T; Suzuki A
    Plant Physiol Biochem; 2019 Mar; 136():245-254. PubMed ID: 30710774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli.
    Tesson AR; Soper TS; Ciustea M; Richards NG
    Arch Biochem Biophys; 2003 May; 413(1):23-31. PubMed ID: 12706338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of the amide groups of asparagine and 2-hydroxysuccinamic Acid by young pea leaves.
    Ta TC; Joy KW; Ireland RJ
    Plant Physiol; 1984 Jul; 75(3):527-30. PubMed ID: 16663659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on Azospirillum brasilense glutamate synthase.
    Vanoni MA; Edmondson DE; Rescigno M; Zanetti G; Curti B
    Biochemistry; 1991 Dec; 30(48):11478-84. PubMed ID: 1683791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of the nitrogen source in the medium on the activity of glutamine synthetase in Candida tropicalis and on the kinetics of the enzymatic reaction of glutamine synthesis].
    Generalova TG; Abramova OV
    Mikrobiologiia; 1975; 44(6):1016-21. PubMed ID: 2839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of nitrogen relationships between Sorghum bicolor and the root-hemiparasitic angiosperm Striga hermonthica (Del.) Benth. using K15 NO3 as isotopic tracer.
    Pageau K; Simier P; Le Bizec B; Robins RJ; Fer A
    J Exp Bot; 2003 Feb; 54(383):789-99. PubMed ID: 12554722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the presence of glutamate synthase in extracts of carrot cell cultures.
    Dougall DK
    Biochem Biophys Res Commun; 1974 Jun; 58(3):639-46. PubMed ID: 4151821
    [No Abstract]   [Full Text] [Related]  

  • 16. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine inhibits the ammonia-dependent activities of two Cys-1 mutants of human asparagine synthetase through the formation of an abortive complex.
    Sheng S; Moraga-Amador DA; van Heeke G; Allison RD; Richards NG; Schuster SM
    J Biol Chem; 1993 Aug; 268(22):16771-80. PubMed ID: 8102140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-dependent synthesis of glutamate in Rhodospirillum rubrum. Physiological evidence for ammonia assimilation via the glutamine synthetase and glutamine: 2-oxoglutarate amino-transferase system.
    Slater JH; Morris I
    Arch Mikrobiol; 1974 Feb; 95(4):337-46. PubMed ID: 4151925
    [No Abstract]   [Full Text] [Related]  

  • 19. Amino acid utilisation and deamination of glutamine and asparagine by Helicobacter pylori.
    Stark RM; Suleiman MS; Hassan IJ; Greenman J; Millar MR
    J Med Microbiol; 1997 Sep; 46(9):793-800. PubMed ID: 9291892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the glutamate dehydrogenase reaction in furnishing aspartate nitrogen for urea synthesis: studies in perfused rat liver with 15N.
    Nissim I; Horyn O; Luhovyy B; Lazarow A; Daikhin Y; Nissim I; Yudkoff M
    Biochem J; 2003 Nov; 376(Pt 1):179-88. PubMed ID: 12935293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.