These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 17091512)
21. Highly reproducible hybridization assay of zeptomole DNA based on adsorption of nanoparticle-bioconjugate. Mo Z; Wang H; Liang Y; Liu F; Xue Y Analyst; 2005 Dec; 130(12):1589-94. PubMed ID: 16284656 [TBL] [Abstract][Full Text] [Related]
22. An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Cui HF; Cheng L; Zhang J; Liu R; Zhang C; Fan H Biosens Bioelectron; 2014 Jun; 56():124-8. PubMed ID: 24480127 [TBL] [Abstract][Full Text] [Related]
23. 2D aggregation and selective desorption of nanoparticle probes: a new method to probe DNA mismatches and damages. Charrier A; Candoni N; Liachenko N; Thibaudau F Biosens Bioelectron; 2007 Apr; 22(9-10):1881-6. PubMed ID: 16959484 [TBL] [Abstract][Full Text] [Related]
25. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction. Zhou J; Xu M; Tang D; Gao Z; Tang J; Chen G Chem Commun (Camb); 2012 Dec; 48(100):12207-9. PubMed ID: 23147220 [TBL] [Abstract][Full Text] [Related]
26. Label-free genosensor based on immobilized DNA hairpins on gold surface. Huang C; Stakenborg T; Cheng Y; Colle F; Steylaerts T; Jans K; Van Dorpe P; Lagae L Biosens Bioelectron; 2011 Mar; 26(7):3121-6. PubMed ID: 21208795 [TBL] [Abstract][Full Text] [Related]
27. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Zhang J; Song S; Zhang L; Wang L; Wu H; Pan D; Fan C J Am Chem Soc; 2006 Jul; 128(26):8575-80. PubMed ID: 16802824 [TBL] [Abstract][Full Text] [Related]
28. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Huang CZ; Liao QG; Gan LH; Guo FL; Li YF Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538 [TBL] [Abstract][Full Text] [Related]
29. A new strategy for a DNA assay based on a target-triggered isothermal exponential degradation reaction. Zhao J; Liu T; Fan Q; Li G Chem Commun (Camb); 2011 May; 47(18):5262-4. PubMed ID: 21445445 [TBL] [Abstract][Full Text] [Related]
30. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Wu ZS; Jiang JH; Fu L; Shen GL; Yu RQ Anal Biochem; 2006 Jun; 353(1):22-9. PubMed ID: 16626619 [TBL] [Abstract][Full Text] [Related]
31. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Zhang S; Zhong H; Ding C Anal Chem; 2008 Oct; 80(19):7206-12. PubMed ID: 18759495 [TBL] [Abstract][Full Text] [Related]
32. LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation. McKenzie F; Faulds K; Graham D Chem Commun (Camb); 2008 May; (20):2367-9. PubMed ID: 18473072 [TBL] [Abstract][Full Text] [Related]
33. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility. Yang W; Lai RY Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042 [TBL] [Abstract][Full Text] [Related]
34. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements. Ganbold EO; Kang T; Lee K; Lee SY; Joo SW Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178 [TBL] [Abstract][Full Text] [Related]
35. Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Bai X; Shao C; Han X; Li Y; Guan Y; Deng Z Biosens Bioelectron; 2010 Apr; 25(8):1984-8. PubMed ID: 20138749 [TBL] [Abstract][Full Text] [Related]
36. Background current reduction and biobarcode amplification for label-free, highly sensitive electrochemical detection of pathogenic DNA. Xu J; Jiang B; Su J; Xiang Y; Yuan R; Chai Y Chem Commun (Camb); 2012 Apr; 48(27):3309-11. PubMed ID: 22362204 [TBL] [Abstract][Full Text] [Related]
37. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles. Miao XM; Xiong C; Wang WW; Ling LS; Shuai XT Chemistry; 2011 Sep; 17(40):11230-6. PubMed ID: 21922555 [TBL] [Abstract][Full Text] [Related]
38. Fluorescein-labeled "arch-like" DNA probes for electrochemical detection of DNA on gold nanoparticle-modified gold electrodes. Xu L; Su HR; Sun GR; Wang Y; Guo SJ; Zhang XR; Zhang SS; Xing SC J Biotechnol; 2013 Dec; 168(4):388-93. PubMed ID: 24140637 [TBL] [Abstract][Full Text] [Related]
39. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
40. Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Lu W; Jin Y; Wang G; Chen D; Li J Biosens Bioelectron; 2008 May; 23(10):1534-9. PubMed ID: 18294836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]