These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17091855)

  • 1. A high-sensitivity, dual-plate, thickness-shear mode pressure sensor.
    Hu Y; Yang J; Zeng Y; Jiang Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2193-7. PubMed ID: 17091855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator.
    Xue H; Hu Y; Wang QM; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1826-33. PubMed ID: 17941388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the scaling rules determining the performance of film bulk acoustic resonators operating as mass sensors.
    Weber J; Link M; Primig R; Pitzer D; Wersing W; Schreiter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):405-12. PubMed ID: 17328337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical modeling of a thickness-shear mode circular cylinder piezoelectric transformer.
    Yang J; Chen Z; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):621-6. PubMed ID: 17375831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the shear stress distribution between a functionally graded piezoelectric actuator and an elastic substrate and the reduction of its concentration.
    Yang J; Jin Z; Li J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2360-2. PubMed ID: 19049914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plantar shear stress measurements - A review.
    Rajala S; Lekkala J
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):475-83. PubMed ID: 24820135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated high-temperature piezoelectric plate acoustic wave transducers using mode conversion.
    Wu KT; Kobayashi M; Jen CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1218-24. PubMed ID: 19574129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frequency shear horizontal plate acoustic wave devices.
    Vohra G; Joshi SG; Zaitsev BD; Kuznetsova IE; Teplykh AA
    Ultrasonics; 2009 Dec; 49(8):760-4. PubMed ID: 19577781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shear and plantar pressure sensor based on fiber-optic bend loss.
    Wang WC; Ledoux WR; Sangeorzan BJ; Reinhall PG
    J Rehabil Res Dev; 2005; 42(3):315-25. PubMed ID: 16187244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-based optical pressure sensors for 3D pressure mapping.
    Banerjee N; Xie Y; Chalaseni S; Mastrangelo CH
    Biomed Microdevices; 2015 Oct; 17(5):97. PubMed ID: 26342493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency shifts in plate crystal resonators induced by electric, magnetic, or mechanical fields in surface films.
    Liu N; Yang J; Hu Y; Chen X; Jiang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2588-95. PubMed ID: 23443695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartz crystal microbalance based on torsional piezoelectric resonators.
    Bücking W; Du B; Turshatov A; König AM; Reviakine I; Bode B; Johannsmann D
    Rev Sci Instrum; 2007 Jul; 78(7):074903. PubMed ID: 17672786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of biomedical sterilization processes on performance characteristics of MEMS pressure sensors.
    Ferrara LA; Fleischman AJ; Dunning JL; Zorman CA; Roy S
    Biomed Microdevices; 2007 Dec; 9(6):809-14. PubMed ID: 17530408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.
    Hall RS; Desmoulin GT; Milner TE
    J Biomech; 2008 Dec; 41(16):3492-5. PubMed ID: 19019374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance.
    Wingqvist G; Anderson H; Lennartsson C; Weissbach T; Yantchev V; Spetz AL
    Biosens Bioelectron; 2009 Jul; 24(11):3387-90. PubMed ID: 19447595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal selection of piezoelectric substrates and crystal cuts for SAW-based pressure and temperature sensors.
    Zhang X; Wang FY; Li L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1207-16. PubMed ID: 17571819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity dependences on side length and aspect ratio of a diaphragm in a glass-based guided-wave optical pressure sensor.
    Nikkuni H; Watanabe Y; Ohkawa M; Sato T
    Opt Express; 2008 Sep; 16(19):15024-32. PubMed ID: 18795039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic methods for obtaining the pressure reflection coefficient from a buffer rod based measurement cell.
    Bjørndal E; Frøysa KE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1781-93. PubMed ID: 18986921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.
    Wu YL; Brand JH; van Gemert JL; Verkerk J; Wisman H; van Blaaderen A; Imhof A
    Rev Sci Instrum; 2007 Oct; 78(10):103902. PubMed ID: 17979430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.