These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17091949)

  • 1. Nucleation simulations using the fluid dynamics software FLUENT with the fine particle model FPM.
    Herrmann E; Lihavainen H; Hyvärinen AP; Riipinen I; Wilck M; Stratmann F; Kulmala M
    J Phys Chem A; 2006 Nov; 110(45):12448-55. PubMed ID: 17091949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-evaluation of the pressure effect for nucleation in laminar flow diffusion chamber experiments with fluent and the fine particle model.
    Herrmann E; Hyvärinen AP; Brus D; Lihavainen H; Kulmala M
    J Phys Chem A; 2009 Feb; 113(8):1434-9. PubMed ID: 19191511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous nucleation rates of higher n-alcohols measured in a laminar flow diffusion chamber.
    Hyvärinen AP; Lihavainen H; Viisanen Y; Kulmala M
    J Chem Phys; 2004 Jun; 120(24):11621-33. PubMed ID: 15268196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.
    Hyvärinen AP; Brus D; Zdímal V; Smolík J; Kulmala M; Viisanen Y; Lihavainen H
    J Chem Phys; 2006 Jun; 124(22):224304. PubMed ID: 16784271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data evaluation of laminar flow diffusion chamber nucleation experiments with different computational methods.
    Mitrakos D; Zdímal V; Brus D; Housiadas C
    J Chem Phys; 2008 Aug; 129(5):054503. PubMed ID: 18698910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.
    Brus D; Zdímal V; Stratmann F
    J Chem Phys; 2006 Apr; 124(16):164306. PubMed ID: 16674134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous nucleation of n-propanol, n-butanol, and n-pentanol in a supersonic nozzle.
    Gharibeh M; Kim Y; Dieregsweiler U; Wyslouzil BE; Ghosh D; Strey R
    J Chem Phys; 2005 Mar; 122(9):094512. PubMed ID: 15836155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.
    Herrmann E; Brus D; Hyvärinen AP; Stratmann F; Wilck M; Lihavainen H; Kulmala M
    J Phys Chem A; 2010 Aug; 114(31):8033-42. PubMed ID: 20684574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: the effect of pressure and kind of carrier gas.
    Brus D; Hyvärinen AP; Wedekind J; Viisanen Y; Kulmala M; Zdímal V; Smolík J; Lihavainen H
    J Chem Phys; 2008 Apr; 128(13):134312. PubMed ID: 18397069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous water nucleation in a laminar flow diffusion chamber.
    Manka AA; Brus D; Hyvärinen AP; Lihavainen H; Wölk J; Strey R
    J Chem Phys; 2010 Jun; 132(24):244505. PubMed ID: 20590204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous nucleation rate measurements in supersaturated water vapor.
    Brus D; Zdímal V; Smolík J
    J Chem Phys; 2008 Nov; 129(17):174501. PubMed ID: 19045352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.
    Brus D; Hyvärinen AP; Zdímal V; Lihavainen H
    J Chem Phys; 2005 Jun; 122(21):214506. PubMed ID: 15974753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description of fluid dynamics and coupled transports in models of a laminar flow diffusion chamber.
    Trávníčková T; Havlica J; Ždímal V
    J Chem Phys; 2013 Aug; 139(6):064701. PubMed ID: 23947874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the nucleation mechanism for the binary n-nonane/1-alcohol series with atomistic simulations.
    Nellas RB; McKenzie ME; Chen B
    J Phys Chem B; 2006 Sep; 110(37):18619-28. PubMed ID: 16970491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous nucleation rate measurements in supersaturated water vapor II.
    Brus D; Zdímal V; Uchtmann H
    J Chem Phys; 2009 Aug; 131(7):074507. PubMed ID: 19708751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Argon nucleation in a cryogenic nucleation pulse chamber.
    Iland K; Wölk J; Strey R; Kashchiev D
    J Chem Phys; 2007 Oct; 127(15):154506. PubMed ID: 17949172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.