BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17091950)

  • 1. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism.
    Pérez-Maqueda LA; Criado JM; Sanchez-Jiménez PE
    J Phys Chem A; 2006 Nov; 110(45):12456-62. PubMed ID: 17091950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure.
    Perejón A; Sánchez-Jiménez PE; Criado JM; Pérez-Maqueda LA
    J Phys Chem B; 2011 Mar; 115(8):1780-91. PubMed ID: 21302949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics.
    Khawam A; Flanagan DR
    J Phys Chem B; 2005 May; 109(20):10073-80. PubMed ID: 16852219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/"Ockham's razor" model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth.
    Morris AM; Watzky MA; Agar JN; Finke RG
    Biochemistry; 2008 Feb; 47(8):2413-27. PubMed ID: 18247636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.
    Skrdla PJ; Robertson RT
    J Phys Chem B; 2005 Jun; 109(21):10611-9. PubMed ID: 16852288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-synuclein aggregation variable temperature and variable pH kinetic data: a re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth.
    Morris AM; Finke RG
    Biophys Chem; 2009 Mar; 140(1-3):9-15. PubMed ID: 19101068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant.
    Hoh CY; Cord-Ruwisch R
    Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of a general model of activation of aspartic proteinase zymogens.
    Varón R; García-Moreno M; Valera-Ruipérez D; García-Molina F; García-Cánovas F; Ladrón-de Guevara RG; Masiá-Pérez J; Havsteen BH
    J Theor Biol; 2006 Oct; 242(3):743-54. PubMed ID: 16762372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations.
    Schmink JR; Holcomb JL; Leadbeater NE
    Chemistry; 2008; 14(32):9943-50. PubMed ID: 18830985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined kinetics and iterative target transformation factor analysis for spectroscopic monitoring of reactions.
    Carvalho AR; Wattoom J; Zhu L; Brereton RG
    Analyst; 2006 Jan; 131(1):90-7. PubMed ID: 16365668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of mean and median particle size of ruminant digesta.
    Fisher DS; Burns JC; Pond KR
    J Dairy Sci; 1988 Feb; 71(2):518-24. PubMed ID: 3379178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic model for microbial uptake of insoluble solid-state substrate.
    Huang SY; Chou MS
    Biotechnol Bioeng; 1990 Mar; 35(6):547-58. PubMed ID: 18592550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modelling of the photocatalytic inactivation of bacteria.
    Marugán J; van Grieken R; Cassano AE; Alfano OM
    Water Sci Technol; 2010; 61(6):1547-53. PubMed ID: 20351434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A collision theory-based derivation of semiempirical equations for modeling dispersive kinetics and their application to a mixed-phase crystal decomposition.
    Skrdla PJ
    J Phys Chem A; 2006 Oct; 110(40):11494-500. PubMed ID: 17020262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.
    Liu Y; Cain JP; Wang H; Laskin A
    J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for studying reaction kinetics in gas chromatography, exemplified by using the 1-chloro-2,2-dimethylaziridine interconversion reaction.
    Krupcík J; Mydlová J; Májek P; Simon P; Armstrong DW
    J Chromatogr A; 2008 Apr; 1186(1-2):144-60. PubMed ID: 18243224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive method based on model free method and IKP method for evaluating kinetic parameters of solid state reactions.
    Han Y; Li T; Saito K
    J Comput Chem; 2012 Dec; 33(31):2516-25. PubMed ID: 22926734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data.
    Cai J; Liu R
    J Phys Chem B; 2007 Sep; 111(36):10681-6. PubMed ID: 17705423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of binding the mRNA cap analogues to the translation initiation factor eIF4E under second-order reaction conditions.
    Błachut-Okrasińska E; Bojarska E; Stepiński J; Antosiewicz JM
    Biophys Chem; 2007 Sep; 129(2-3):289-97. PubMed ID: 17651889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.