These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 17091952)
1. TD-DFT description of photoabsorption and electron transfer in a covalently bonded porphyrin-fullerene dyad. Cramariuc O; Hukka TI; Rantala TT; Lemmetyinen H J Phys Chem A; 2006 Nov; 110(45):12470-6. PubMed ID: 17091952 [TBL] [Abstract][Full Text] [Related]
2. Ab initio description of photoabsorption and electron transfer in a doubly-linked porphyrin-fullerene dyad. Cramariuc O; Hukka TI; Rantala TT; Lemmetyinen H J Comput Chem; 2009 Jun; 30(8):1194-201. PubMed ID: 18988251 [TBL] [Abstract][Full Text] [Related]
3. DFT and TDDFT study related to electron transfer in nonbonded porphine...C60 complexes. Toivonen TL; Hukka TI; Cramariuc O; Rantala TT; Lemmetyinen H J Phys Chem A; 2006 Nov; 110(44):12213-21. PubMed ID: 17078617 [TBL] [Abstract][Full Text] [Related]
4. Comparison of DFT methods for molecular orbital eigenvalue calculations. Zhang G; Musgrave CB J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730 [TBL] [Abstract][Full Text] [Related]
5. Intramolecular electronic communication in a dimethylaminoazobenzene-fullerene C60 dyad: an experimental and TD-DFT study. Kumar KS; Patnaik A J Comput Chem; 2010 Apr; 31(6):1182-94. PubMed ID: 19827143 [TBL] [Abstract][Full Text] [Related]
6. Design, synthesis, and photophysical studies of a porphyrin-fullerene dyad with parachute topology; charge recombination in the marcus inverted region. Schuster DI; Cheng P; Jarowski PD; Guldi DM; Luo C; Echegoyen L; Pyo S; Holzwarth AR; Braslavsky SE; Williams RM; Klihm G J Am Chem Soc; 2004 Jun; 126(23):7257-70. PubMed ID: 15186163 [TBL] [Abstract][Full Text] [Related]
7. Charge transfer excitations in cofacial fullerene-porphyrin complexes. Zope RR; Olguin M; Baruah T J Chem Phys; 2012 Aug; 137(8):084317. PubMed ID: 22938243 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene. Maligaspe E; Tkachenko NV; Subbaiyan NK; Chitta R; Zandler ME; Lemmetyinen H; D'Souza F J Phys Chem A; 2009 Jul; 113(30):8478-89. PubMed ID: 19580310 [TBL] [Abstract][Full Text] [Related]
9. Parameters for excess electron transfer in DNA. Estimation using unoccupied Kohn-Sham orbitals and TD DFT. Félix M; Voityuk AA J Phys Chem A; 2008 Sep; 112(38):9043-9. PubMed ID: 18754606 [TBL] [Abstract][Full Text] [Related]
10. Density functional studies on the effects of hydrogen bonding on the formation of a charge-transfer complex between p-benzoquinone and 2,6-dimethoxyphenol. Bangal PR J Phys Chem A; 2007 Jun; 111(25):5536-43. PubMed ID: 17539618 [TBL] [Abstract][Full Text] [Related]
11. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy. Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870 [TBL] [Abstract][Full Text] [Related]
12. Charge separation and energy transfer in a caroteno-C60 dyad: photoinduced electron transfer from the carotenoid excited states. Berera R; Moore GF; van Stokkum IH; Kodis G; Liddell PA; Gervaldo M; van Grondelle R; Kennis JT; Gust D; Moore TA; Moore AL Photochem Photobiol Sci; 2006 Dec; 5(12):1142-9. PubMed ID: 17136280 [TBL] [Abstract][Full Text] [Related]
13. Ab initio excited state properties and dynamics of a prototype sigma-bridged-donor-acceptor molecule. Tapavicza E; Tavernelli I; Rothlisberger U J Phys Chem A; 2009 Sep; 113(35):9595-602. PubMed ID: 19663389 [TBL] [Abstract][Full Text] [Related]
14. Porphyrin-fullerene linked systems as artificial photosynthetic mimics. Imahori H Org Biomol Chem; 2004 May; 2(10):1425-33. PubMed ID: 15136797 [TBL] [Abstract][Full Text] [Related]
15. Can TD-DFT calculations accurately describe the excited states behavior of stacked nucleobases? The cytosine dimer as a test case. Santoro F; Barone V; Improta R J Comput Chem; 2008 Apr; 29(6):957-64. PubMed ID: 17963224 [TBL] [Abstract][Full Text] [Related]
16. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity. Teale AM; De Proft F; Tozer DJ J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637 [TBL] [Abstract][Full Text] [Related]
17. Double-hybrid density functional theory for excited electronic states of molecules. Grimme S; Neese F J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141 [TBL] [Abstract][Full Text] [Related]
18. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches. Ramírez-Solís A; Poteau R; Vela A; Daudey JP J Chem Phys; 2005 Apr; 122(16):164306. PubMed ID: 15945683 [TBL] [Abstract][Full Text] [Related]
19. Optical excitations of defects in realistic nanoscale silica clusters: comparing the performance of density functional theory using hybrid functionals with correlated wavefunction methods. Zwijnenburg MA; Sousa C; Sokol AA; Bromley ST J Chem Phys; 2008 Jul; 129(1):014706. PubMed ID: 18624495 [TBL] [Abstract][Full Text] [Related]
20. State-selective electron transfer in an unsymmetric acceptor-Zn(II)porphyrin-acceptor triad: toward a controlled directionality of electron transfer from the porphyrin S2 and S1 states as a basis for a molecular switch. Wallin S; Monnereau C; Blart E; Gankou JR; Odobel F; Hammarström L J Phys Chem A; 2010 Feb; 114(4):1709-21. PubMed ID: 20063874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]