BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17092168)

  • 1. Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia.
    Liu JT; Mandella MJ; Friedland S; Soetikno R; Crawford JM; Contag CH; Kino GS; Wang TD
    J Biomed Opt; 2006; 11(5):054019. PubMed ID: 17092168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope.
    Romero-Borja F; Venkateswaran K; Roorda A; Hebert T
    Appl Opt; 2005 Jul; 44(19):4032-40. PubMed ID: 16004050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated extended volume imaging of tissue using confocal and optical microscopy.
    Sands GB; Gerneke DA; Smaill BH; Le Grice IJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():133-6. PubMed ID: 17946383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner.
    Liu JT; Mandella MJ; Ra H; Wong LK; Solgaard O; Kino GS; Piyawattanametha W; Contag CH; Wang TD
    Opt Lett; 2007 Feb; 32(3):256-8. PubMed ID: 17215937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the penetration depth in multiphoton excitation laser scanning microscopy.
    McConnell G
    J Biomed Opt; 2006; 11(5):054020. PubMed ID: 17092169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
    Wang D; Meza D; Wang Y; Gao L; Liu JT
    Opt Lett; 2014 Sep; 39(18):5431-4. PubMed ID: 26466290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning.
    Wang TD; Contag CH; Mandella MJ; Chan NY; Kino GS
    J Biomed Opt; 2004; 9(4):735-42. PubMed ID: 15250760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional integral imaging of micro-objects.
    Jang JS; Javidi B
    Opt Lett; 2004 Jun; 29(11):1230-2. PubMed ID: 15209256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens.
    Carlson K; Chidley M; Sung KB; Descour M; Gillenwater A; Follen M; Richards-Kortum R
    Appl Opt; 2005 Apr; 44(10):1792-7. PubMed ID: 15813514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution in the ApoTome and the confocal laser scanning microscope: comparison.
    Weigel A; Schild D; Zeug A
    J Biomed Opt; 2009; 14(1):014022. PubMed ID: 19256710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
    Lee DR; Kim YD; Gweon DG; Yoo H
    Opt Express; 2013 Jul; 21(15):17839-48. PubMed ID: 23938657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual sectioning of cardiac tissue relative to fiber orientation.
    Sands GB; Smaill BH; LeGrice IJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():226-9. PubMed ID: 19162634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection.
    Wang TD; Contag CH; Mandella MJ; Chan NY; Kino GS
    Opt Lett; 2003 Oct; 28(20):1915-7. PubMed ID: 14587774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast three-dimensional laser scanning scheme using acousto-optic deflectors.
    Reddy GD; Saggau P
    J Biomed Opt; 2005; 10(6):064038. PubMed ID: 16409103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Handheld subcellular-resolution single-fiber confocal microscope using high-reflectivity two-axis vertical combdrive silicon microscanner.
    Kumar K; Hoshino K; Zhang X
    Biomed Microdevices; 2008 Oct; 10(5):653-60. PubMed ID: 18449642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-shift resolving confocal microscopy with high axial resolution, wide range and reflectance disturbance resistibility.
    Liu J; Tan J; Zhao C; Ge Z; Zhang D
    Opt Express; 2009 Aug; 17(18):16281-90. PubMed ID: 19724627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving lesion localization when imaging with handheld reflectance confocal microscope.
    Marino ML; Rogers T; Sierra Gil H; Rajadhyaksha M; Cordova MA; Marghoob AA
    Skin Res Technol; 2016 Nov; 22(4):519-520. PubMed ID: 26792361
    [No Abstract]   [Full Text] [Related]  

  • 18. Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery.
    Liu JT; Mandella MJ; Loewke NO; Haeberle H; Ra H; Piyawattanametha W; Solgaard O; Kino GS; Contag CH
    J Biomed Opt; 2010; 15(2):026029. PubMed ID: 20459274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared laser tomographic imaging with right-angled scattered coherent light using an optical heterodyne-detection-based confocal scanning system.
    Nishidate I; Goto M; Sasaki Y; Yuasa T; Devaraj B; Niizeki K; Akatsuka T
    Appl Opt; 2007 Apr; 46(11):2123-30. PubMed ID: 17384729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal theta line-scanning microscope for imaging human tissues.
    Dwyer PJ; DiMarzio CA; Rajadhyaksha M
    Appl Opt; 2007 Apr; 46(10):1843-51. PubMed ID: 17356629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.