These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 1709221)

  • 41. Free radical scavengers prevent intestinal ischemia-reperfusion-mediated cardiac dysfunction.
    Horton JW; White DJ
    J Surg Res; 1993 Sep; 55(3):282-9. PubMed ID: 8412111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PEG-SOD and myocardial protection. Studies in the blood- and crystalloid-perfused rabbit and rat hearts.
    GaliƱanes M; Qiu Y; Ezrin A; Hearse DJ
    Circulation; 1992 Aug; 86(2):672-82. PubMed ID: 1638731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen free radicals in ischemic acute renal failure in the rat.
    Paller MS; Hoidal JR; Ferris TF
    J Clin Invest; 1984 Oct; 74(4):1156-64. PubMed ID: 6434591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanisms of action.
    Przyklenk K; Kloner RA
    Am Heart J; 1991 May; 121(5):1319-30. PubMed ID: 1850188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deferoxamine, an iron chelator, reduces myocardial injury and free radical generation in isolated neonatal rabbit hearts subjected to global ischaemia-reperfusion.
    Katoh S; Toyama J; Kodama I; Akita T; Abe T
    J Mol Cell Cardiol; 1992 Nov; 24(11):1267-75. PubMed ID: 1336063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrolysis-induced myocardial dysfunction. A novel method for the study of free radical mediated tissue injury.
    Jackson CV; Mickelson JK; Stringer K; Rao PS; Lucchesi BR
    J Pharmacol Methods; 1986 Jul; 15(4):305-20. PubMed ID: 3724201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reperfusion damage: free radicals mediate delayed membrane changes rather than early ventricular arrhythmias.
    Coetzee WA; Owen P; Dennis SC; Saman S; Opie LH
    Cardiovasc Res; 1990 Feb; 24(2):156-64. PubMed ID: 2328520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Superoxide dismutase therapy for myocardial ischemia.
    Downey JM; Omar B; Ooiwa H; McCord J
    Free Radic Res Commun; 1991; 12-13 Pt 2():703-20. PubMed ID: 2060842
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arrhythmia and delayed recovery of cardiac action potential during reperfusion after ischemia. Role of oxygen radical-induced no-reflow phenomenon.
    Aiello EA; Jabr RI; Cole WC
    Circ Res; 1995 Jul; 77(1):153-62. PubMed ID: 7788873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soluble complement receptor type 1 inhibits the complement pathway and prevents contractile failure in the postischemic heart. Evidence that complement activation is required for neutrophil-mediated reperfusion injury.
    Shandelya SM; Kuppusamy P; Herskowitz A; Weisfeldt ML; Zweier JL
    Circulation; 1993 Dec; 88(6):2812-26. PubMed ID: 8252695
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of oxygen radicals in canine myocardial metabolic derangement during regional ischemia.
    Ohmi H; Ichihara K; Abiko Y
    Am J Physiol; 1992 Feb; 262(2 Pt 2):H553-61. PubMed ID: 1539715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reperfusion injury.
    Flaherty JT; Weisfeldt ML
    Free Radic Biol Med; 1988; 5(5-6):409-19. PubMed ID: 3076884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergic effects of NO and oxygen free radicals in the injury of ischemia-reperfused myocardium--ESR studies on NO free radicals generated from ischemia-reperfused myocardium.
    Zhao B; Shen J; Hu J; Wan Q; Xin W
    Sci China C Life Sci; 1996 Oct; 39(5):491-500. PubMed ID: 9772352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart.
    Downey JM; Miura T; Eddy LJ; Chambers DE; Mellert T; Hearse DJ; Yellon DM
    J Mol Cell Cardiol; 1987 Nov; 19(11):1053-60. PubMed ID: 3481402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of myocardial ischemic injury with oxygen-derived free radical scavengers.
    Gardner TJ; Stewart JR; Casale AS; Downey JM; Chambers DE
    Surgery; 1983 Sep; 94(3):423-7. PubMed ID: 6412380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Postischemic renal dysfunction: the limited role of xanthine oxidase-generated oxygen free radicals.
    Galat JA; Robinson AV; Rhodes RS
    J Surg Res; 1990 Dec; 49(6):488-92. PubMed ID: 2263085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of superoxide dismutase on infarct size and postischemic recovery of myocardial contractility and metabolism in dogs.
    Vanhaecke J; Van de Werf F; Ronaszeki A; Flameng W; Lesaffre E; De Geest H
    J Am Coll Cardiol; 1991 Jul; 18(1):224-30. PubMed ID: 2050925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The effect of oxygen free radical scavenger on endothelial cell at ischemic and reperfusion injury].
    Imamura M
    Hokkaido Igaku Zasshi; 1992 Jul; 67(4):512-21. PubMed ID: 1427595
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of superoxide dismutase and catalase on regional dysfunction after exercise-induced ischemia.
    Homans DC; Asinger R; Pavek T; Crampton M; Lindstrom P; Peterson D; Bache RJ
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H392-8. PubMed ID: 1510136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.