These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 17092250)
1. The detection and significance of minimal residual disease in acute and chronic leukemia. Chung NG; Buxhofer-Ausch V; Radich JP Tissue Antigens; 2006 Nov; 68(5):371-85. PubMed ID: 17092250 [TBL] [Abstract][Full Text] [Related]
2. Stem cell transplantation in poor-risk chronic lymphocytic leukemia: assessment of post-transplant minimal residual disease using four- and six-color flow cytometry and allele-specific RQ-PCR. Itälä M; Huhtinen AR; Juvonen V; Kairisto V; Pelliniemi TT; Penttilä TL; Rauhala A; Tienhaara A; Remes K Eur J Haematol; 2008 Aug; 81(2):100-6. PubMed ID: 18410542 [TBL] [Abstract][Full Text] [Related]
3. Minimal residual disease assessment in chronic lymphocytic leukaemia. Sayala HA; Rawstron AC; Hillmen P Best Pract Res Clin Haematol; 2007 Sep; 20(3):499-512. PubMed ID: 17707836 [TBL] [Abstract][Full Text] [Related]
4. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Stark B; Avigad S; Luria D; Manor S; Reshef-Ronen T; Avrahami G; Yaniv I Pediatr Blood Cancer; 2009 Jan; 52(1):20-5. PubMed ID: 19006253 [TBL] [Abstract][Full Text] [Related]
5. Comparison of minimal residual disease (MRD) estimated by flow cytometry and by real-time quantitative PCR of Wilms tumor gene 1 (WT1) transcript expression in children with acute lymphoblastic leukemia. Chen JS; Hsiao CC; Sheen JM; Cheng CN Leuk Res; 2007 Oct; 31(10):1351-7. PubMed ID: 17445885 [TBL] [Abstract][Full Text] [Related]
6. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Böttcher S; Ritgen M; Buske S; Gesk S; Klapper W; Hoster E; Hiddemann W; Unterhalt M; Dreyling M; Siebert R; Kneba M; Pott C; Haematologica; 2008 Apr; 93(4):551-9. PubMed ID: 18379010 [TBL] [Abstract][Full Text] [Related]
7. [The minimal residual disease (MRD) in hematological malignancies]. Yokota S; Okamoto T Gan To Kagaku Ryoho; 2001 Jun; 28(6):762-8. PubMed ID: 11432342 [TBL] [Abstract][Full Text] [Related]
8. Detection of minimal residual disease in acute leukemia. van der Velden VH; Boeckx N; van Wering ER; van Dongen JJ J Biol Regul Homeost Agents; 2004; 18(2):146-54. PubMed ID: 15471219 [TBL] [Abstract][Full Text] [Related]
9. The use of PCR technology for detecting minimal residual disease in patients with leukemia. Radich JP Rev Immunogenet; 1999; 1(2):265-78. PubMed ID: 11253952 [TBL] [Abstract][Full Text] [Related]
10. Acute lymphoblastic leukemia: diagnosis and detection of minimal residual disease following therapy. Digiuseppe JA Clin Lab Med; 2007 Sep; 27(3):533-49, vi. PubMed ID: 17658406 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. DiGiuseppe JA; Fuller SG; Borowitz MJ Cytometry B Clin Cytom; 2009 Mar; 76(2):150-5. PubMed ID: 18831072 [TBL] [Abstract][Full Text] [Related]
12. Marked Variability in Reported Minimal Residual Disease Lower Level of Detection of 4 Hematolymphoid Neoplasms: A Survey of Participants in the College of American Pathologists Flow Cytometry Proficiency Testing Program. Keeney M; Halley JG; Rhoads DD; Ansari MQ; Kussick SJ; Karlon WJ; Mehta KU; Dorfman DM; Linden MA Arch Pathol Lab Med; 2015 Oct; 139(10):1276-80. PubMed ID: 25695342 [TBL] [Abstract][Full Text] [Related]
14. Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Campana D; Coustan-Smith E Best Pract Res Clin Haematol; 2002 Mar; 15(1):1-19. PubMed ID: 11987913 [TBL] [Abstract][Full Text] [Related]
15. Minimal residual disease (MRD) measurement as a tool to compare the efficacy of chemotherapeutic drug regimens using Escherichia Coli-asparaginase or Erwinia-asparaginase in childhood acute lymphoblastic leukemia (ALL). Kwok CS; Kham SK; Ariffin H; Lin HP; Quah TC; Yeoh AE Pediatr Blood Cancer; 2006 Sep; 47(3):299-304. PubMed ID: 16302217 [TBL] [Abstract][Full Text] [Related]
16. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Robillard N; Cavé H; Méchinaud F; Guidal C; Garnache-Ottou F; Rohrlich PS; Avet-Loiseau H; Garand R Haematologica; 2005 Nov; 90(11):1516-23. PubMed ID: 16266899 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the sensitivity of flow cytometry and bone marrow biopsy in the detection of minimal residual disease in chronic lymphocytic leukemia. Maloum K; Charlotte F; Divine M; Cazin B; Lesty C; Merle-Béral H; Haematologica; 2006 Jun; 91(6):860-1. PubMed ID: 16769593 [TBL] [Abstract][Full Text] [Related]
19. Prospective comparison of two flow cytometry methodologies for monitoring minimal residual disease in a multicenter treatment protocol of childhood acute lymphoblastic leukemia. Luria D; Rosenthal E; Steinberg D; Kodman Y; Safanaiev M; Amariglio N; Avigad S; Stark B; Izraeli S; Cytometry B Clin Cytom; 2010 Nov; 78(6):365-71. PubMed ID: 20632326 [TBL] [Abstract][Full Text] [Related]
20. Minimal residual disease as a surrogate marker for risk assignment to ALL patients. Cazzaniga G; Gaipa G; Rossi V; Biondi A Rev Clin Exp Hematol; 2003 Sep; 7(3):292-323. PubMed ID: 15024971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]