These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 17093098)
1. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex. Tohmi M; Kitaura H; Komagata S; Kudoh M; Shibuki K J Neurosci; 2006 Nov; 26(45):11775-85. PubMed ID: 17093098 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of vision by monocular deprivation in adult mice. Prusky GT; Alam NM; Douglas RM J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076 [TBL] [Abstract][Full Text] [Related]
3. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Cang J; Kalatsky VA; Löwel S; Stryker MP Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279 [TBL] [Abstract][Full Text] [Related]
4. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice. Lickey ME; Pham TA; Gordon B Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006 [TBL] [Abstract][Full Text] [Related]
7. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex. Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180 [TBL] [Abstract][Full Text] [Related]
8. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice. Hosang L; Yusifov R; Löwel S eNeuro; 2018; 5(1):. PubMed ID: 29379877 [TBL] [Abstract][Full Text] [Related]
11. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335 [TBL] [Abstract][Full Text] [Related]
12. Experience-enabled enhancement of adult visual cortex function. Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301 [TBL] [Abstract][Full Text] [Related]
13. Effects of different forms of monocular deprivation on primary visual cortex maps. Jaffer S; Vorobyov V; Sengpiel F Vis Neurosci; 2012 Sep; 29(4-5):247-53. PubMed ID: 22882840 [TBL] [Abstract][Full Text] [Related]
14. The critical period for ocular dominance plasticity in the Ferret's visual cortex. Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053 [TBL] [Abstract][Full Text] [Related]
15. Anatomical correlates of functional plasticity in mouse visual cortex. Antonini A; Fagiolini M; Stryker MP J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241 [TBL] [Abstract][Full Text] [Related]
16. Recovery of binocular responses after brief monocular deprivation in kittens. Kameyama K; Hata Y; Tsumoto T Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269 [TBL] [Abstract][Full Text] [Related]
17. Short-term monocular deprivation alters early components of visual evoked potentials. Lunghi C; Berchicci M; Morrone MC; Di Russo F J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530 [TBL] [Abstract][Full Text] [Related]
18. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience. Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158 [TBL] [Abstract][Full Text] [Related]