These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 17094248)
21. Quality assessments of peptide-spectrum matches in shotgun proteomics. Granholm V; Käll L Proteomics; 2011 Mar; 11(6):1086-93. PubMed ID: 21365749 [TBL] [Abstract][Full Text] [Related]
22. MassWiz: a novel scoring algorithm with target-decoy based analysis pipeline for tandem mass spectrometry. Yadav AK; Kumar D; Dash D J Proteome Res; 2011 May; 10(5):2154-60. PubMed ID: 21417338 [TBL] [Abstract][Full Text] [Related]
23. CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies. Eddes JS; Kapp EA; Frecklington DF; Connolly LM; Layton MJ; Moritz RL; Simpson RJ Proteomics; 2002 Sep; 2(9):1097-103. PubMed ID: 12362328 [TBL] [Abstract][Full Text] [Related]
24. Charger: combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra. Sadygov RG; Hao Z; Huhmer AF Anal Chem; 2008 Jan; 80(2):376-86. PubMed ID: 18081262 [TBL] [Abstract][Full Text] [Related]
25. Identifying bacterial species using CE-MS and SEQUEST with an empirical scoring function. Hu A; Lo AA; Chen CT; Lin KC; Ho YP Electrophoresis; 2007 May; 28(9):1387-92. PubMed ID: 17465417 [TBL] [Abstract][Full Text] [Related]
26. Improving mass and liquid chromatography based identification of proteins using bayesian scoring. Chen SS; Deutsch EW; Yi EC; Li XJ; Goodlett DR; Aebersold R J Proteome Res; 2005; 4(6):2174-84. PubMed ID: 16335964 [TBL] [Abstract][Full Text] [Related]
27. Development and validation of a spectral library searching method for peptide identification from MS/MS. Lam H; Deutsch EW; Eddes JS; Eng JK; King N; Stein SE; Aebersold R Proteomics; 2007 Mar; 7(5):655-67. PubMed ID: 17295354 [TBL] [Abstract][Full Text] [Related]
28. A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. Webb-Robertson BJ; Cannon WR; Oehmen CS; Shah AR; Gurumoorthi V; Lipton MS; Waters KM Bioinformatics; 2008 Jul; 24(13):1503-9. PubMed ID: 18453551 [TBL] [Abstract][Full Text] [Related]
29. Re-fraction: a machine learning approach for deterministic identification of protein homologues and splice variants in large-scale MS-based proteomics. Yang P; Humphrey SJ; Fazakerley DJ; Prior MJ; Yang G; James DE; Yang JY J Proteome Res; 2012 May; 11(5):3035-45. PubMed ID: 22428558 [TBL] [Abstract][Full Text] [Related]
30. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Kapp EA; Schütz F; Connolly LM; Chakel JA; Meza JE; Miller CA; Fenyo D; Eng JK; Adkins JN; Omenn GS; Simpson RJ Proteomics; 2005 Aug; 5(13):3475-90. PubMed ID: 16047398 [TBL] [Abstract][Full Text] [Related]
31. H-score, a mass accuracy driven rescoring approach for improved peptide identification in modification rich samples. Savitski MM; Mathieson T; Becher I; Bantscheff M J Proteome Res; 2010 Nov; 9(11):5511-6. PubMed ID: 20836569 [TBL] [Abstract][Full Text] [Related]
32. Identification of Yersinia pestis and Escherichia coli strains by whole cell and outer membrane protein extracts with mass spectrometry-based proteomics. Jabbour RE; Wade MM; Deshpande SV; Stanford MF; Wick CH; Zulich AW; Snyder AP J Proteome Res; 2010 Jul; 9(7):3647-55. PubMed ID: 20486690 [TBL] [Abstract][Full Text] [Related]
33. Protein identification by tandem mass spectrometry and sequence database searching. Nesvizhskii AI Methods Mol Biol; 2007; 367():87-119. PubMed ID: 17185772 [TBL] [Abstract][Full Text] [Related]
34. Database interrogation algorithms for identification of proteins in proteomic separations. Palagi PM; Lisacek F; Appel RD Methods Mol Biol; 2009; 519():515-31. PubMed ID: 19381607 [TBL] [Abstract][Full Text] [Related]
35. HI-bone: a scoring system for identifying phenylisothiocyanate-derivatized peptides based on precursor mass and high intensity fragment ions. Perez-Riverol Y; Sánchez A; Noda J; Borges D; Carvalho PC; Wang R; Vizcaíno JA; Betancourt L; Ramos Y; Duarte G; Nogueira FC; González LJ; Padrón G; Tabb DL; Hermjakob H; Domont GB; Besada V Anal Chem; 2013 Apr; 85(7):3515-20. PubMed ID: 23448308 [TBL] [Abstract][Full Text] [Related]
37. Improving X!Tandem on peptide identification from mass spectrometry by self-boosted Percolator. Yang P; Ma J; Wang P; Zhu Y; Zhou BB; Yang YH IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1273-80. PubMed ID: 22689082 [TBL] [Abstract][Full Text] [Related]
38. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm. Cerqueira FR; Ricardo AM; de Paiva Oliveira A; Graber A; Baumgartner C BMC Bioinformatics; 2016 Dec; 17(Suppl 18):472. PubMed ID: 28105913 [TBL] [Abstract][Full Text] [Related]
39. Quality assessment of tandem mass spectra using support vector machine (SVM). Zou AM; Wu FX; Ding JR; Poirier GG BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S49. PubMed ID: 19208151 [TBL] [Abstract][Full Text] [Related]
40. Correction of errors in tandem mass spectrum extraction enhances phosphopeptide identification. Hao P; Ren Y; Tam JP; Sze SK J Proteome Res; 2013 Dec; 12(12):5548-57. PubMed ID: 24147958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]