These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17094635)

  • 1. Apatite formation in composites of alpha-TCP and degradable polyesters.
    Van Den Vreken NM; Pieters IY; De Maeyer EA; Jackers GJ; Schacht EH; Verbeeck RM
    J Biomater Sci Polym Ed; 2006; 17(9):953-67. PubMed ID: 17094635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement.
    Tsuru K; Ruslin ; Maruta M; Matsuya S; Ishikawa K
    J Mater Sci Mater Med; 2015 Oct; 26(10):244. PubMed ID: 26411440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement.
    Oda M; Takeuchi A; Lin X; Matsuya S; Ishikawa K
    Dent Mater J; 2008 Sep; 27(5):672-7. PubMed ID: 18972783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):726-34. PubMed ID: 10880122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.
    Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ
    Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies.
    Ni S; Lin K; Chang J; Chou L
    J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites.
    Kikuchi M; Koyama Y; Yamada T; Imamura Y; Okada T; Shirahama N; Akita K; Takakuda K; Tanaka J
    Biomaterials; 2004 Dec; 25(28):5979-86. PubMed ID: 15183612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of calcium-deficient hydroxyapatite from alpha-tricalcium phosphate.
    TenHuisen KS; Brown PW
    Biomaterials; 1998 Dec; 19(23):2209-17. PubMed ID: 9884062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds.
    Guarino V; Ambrosio L
    Acta Biomater; 2008 Nov; 4(6):1778-87. PubMed ID: 18571487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing epsilon-caprolactone or methyl methacrylate.
    Walsh D; Furuzono T; Tanaka J
    Biomaterials; 2001 Jun; 22(11):1205-12. PubMed ID: 11336292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.
    Vecbiskena L; Gross KA; Riekstina U; Yang TC
    Biomed Mater; 2015 Apr; 10(2):025009. PubMed ID: 25886478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of dual-setting calcium phosphate cement using absorbable polymer.
    Thürmer MB; Diehl CE; Brum FJ; dos Santos LA
    Artif Organs; 2013 Nov; 37(11):992-7. PubMed ID: 24236442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis and phase transition of alpha-tricalcium phosphate.
    Li Y; Zhang X; de Groot K
    Biomaterials; 1997 May; 18(10):737-41. PubMed ID: 9158856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements.
    Saint-Jean SJ; Camiré CL; Nevsten P; Hansen S; Ginebra MP
    J Mater Sci Mater Med; 2005 Nov; 16(11):993-1001. PubMed ID: 16388381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.