BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17094670)

  • 1. [Comparative chemical proteomics: simultaneous identification of disease-specific protein targets and their small molecule-binding partners, suitable as drug candidates].
    Dormán G; Puskás LG; Fehér LZ; Hackler L; Lorincz Z; Lang C; Urge L; Darvas F
    Acta Pharm Hung; 2006; 76(1):3-9. PubMed ID: 17094670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the integrin-linked kinase interactome using SILAC.
    Dobreva I; Fielding A; Foster LJ; Dedhar S
    J Proteome Res; 2008 Apr; 7(4):1740-9. PubMed ID: 18327965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography.
    Katayama H; Oda Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Aug; 855(1):21-7. PubMed ID: 17241823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immuno-chemo-proteomics method for drug target deconvolution.
    Saxena C; Zhen E; Higgs RE; Hale JE
    J Proteome Res; 2008 Aug; 7(8):3490-7. PubMed ID: 18590316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry.
    Visser NF; Scholten A; van den Heuvel RH; Heck AJ
    Chembiochem; 2007 Feb; 8(3):298-305. PubMed ID: 17206730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to chemical proteomics for drug discovery and development.
    Han SY; Hwan Kim S
    Arch Pharm (Weinheim); 2007 Apr; 340(4):169-77. PubMed ID: 17351965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of protein-protein interactions with small organic molecules.
    Berg T
    Angew Chem Int Ed Engl; 2003 Jun; 42(22):2462-81. PubMed ID: 12800163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells.
    Paulitschke V; Kunstfeld R; Mohr T; Slany A; Micksche M; Drach J; Zielinski C; Pehamberger H; Gerner C
    J Proteome Res; 2009 May; 8(5):2501-10. PubMed ID: 19222175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic methods for drug target discovery.
    Sleno L; Emili A
    Curr Opin Chem Biol; 2008 Feb; 12(1):46-54. PubMed ID: 18282485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical proteomics reveals bolinaquinone as a clathrin-mediated endocytosis inhibitor.
    Margarucci L; Monti MC; Fontanella B; Riccio R; Casapullo A
    Mol Biosyst; 2011 Feb; 7(2):480-5. PubMed ID: 21060934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry-based functional proteomics for drug target deconvolution.
    Wang K; Yang T; Wu Q; Zhao X; Nice EC; Huang C
    Expert Rev Proteomics; 2012 Jun; 9(3):293-310. PubMed ID: 22809208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic analysis of matched primary and metastatic melanoma cell lines.
    Al-Ghoul M; Brück TB; Lauer-Fields JL; Asirvatham VS; Zapata C; Kerr RG; Fields GB
    J Proteome Res; 2008 Sep; 7(9):4107-18. PubMed ID: 18698805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors.
    Lin YF; Tsai WP; Liu HG; Liang PH
    Cancer Res; 2009 Sep; 69(17):6879-88. PubMed ID: 19690144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional proteomics: protein-protein interactions in vivo.
    Monti M; Cozzolino M; Cozzolino F; Tedesco R; Pucci P
    Ital J Biochem; 2007 Dec; 56(4):310-4. PubMed ID: 19192633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeing small molecules in action with bioorthogonal chemistry.
    Raghavan AS; Hang HC
    Drug Discov Today; 2009 Feb; 14(3-4):178-84. PubMed ID: 18973827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical proteomics and its impact on the drug discovery process.
    Miao Q; Zhang CC; Kast J
    Expert Rev Proteomics; 2012 Jun; 9(3):281-91. PubMed ID: 22809207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics.
    Monti M; Cozzolino M; Cozzolino F; Vitiello G; Tedesco R; Flagiello A; Pucci P
    Expert Rev Proteomics; 2009 Apr; 6(2):159-69. PubMed ID: 19385943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly.
    Wu Z; Zhen Z; Jiang JH; Shen GL; Yu RQ
    J Am Chem Soc; 2009 Sep; 131(34):12325-32. PubMed ID: 19655753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical proteomics-based drug design: target and antitarget fishing with a catechol-rhodanine privileged scaffold for NAD(P)(H) binding proteins.
    Ge X; Wakim B; Sem DS
    J Med Chem; 2008 Aug; 51(15):4571-80. PubMed ID: 18616236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.