BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 1709492)

  • 1. Structural models of ribonuclease H domains in reverse transcriptases from retroviruses.
    Nakamura H; Katayanagi K; Morikawa K; Ikehara M
    Nucleic Acids Res; 1991 Apr; 19(8):1817-23. PubMed ID: 1709492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition.
    Lim D; Orlova M; Goff SP
    J Virol; 2002 Aug; 76(16):8360-73. PubMed ID: 12134040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase.
    Gao HQ; Sarafianos SG; Arnold E; Hughes SH
    J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of illimaquinone, a selective inhibitor of the RNase H activity, with the reverse transcriptases of human immunodeficiency and murine leukemia retroviruses.
    Loya S; Hizi A
    J Biol Chem; 1993 May; 268(13):9323-8. PubMed ID: 7683648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H.
    Schultz SJ; Zhang M; Champoux JJ
    J Mol Biol; 2010 Mar; 397(1):161-78. PubMed ID: 20122939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNase H cleavage of tRNAPro mediated by M-MuLV and HIV-1 reverse transcriptases.
    Smith CM; Potts WB; Smith JS; Roth MJ
    Virology; 1997 Mar; 229(2):437-46. PubMed ID: 9126256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled.
    DeStefano JJ; Buiser RG; Mallaber LM; Myers TW; Bambara RA; Fay PJ
    J Biol Chem; 1991 Apr; 266(12):7423-31. PubMed ID: 1708386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities.
    Blain SW; Goff SP
    J Biol Chem; 1993 Nov; 268(31):23585-92. PubMed ID: 7693692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases.
    Yasukawa K; Mizuno M; Inouye K
    J Biochem; 2009 Mar; 145(3):315-24. PubMed ID: 19060310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus.
    Das D; Georgiadis MM
    Structure; 2004 May; 12(5):819-29. PubMed ID: 15130474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNase H activity: structure, specificity, and function in reverse transcription.
    Schultz SJ; Champoux JJ
    Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli.
    Hizi A; Tal R; Hughes SH
    Virology; 1991 Jan; 180(1):339-46. PubMed ID: 1701948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding the ribonuclease H domain of Moloney murine leukemia virus reverse transcriptase requires metal binding or a short N-terminal extension.
    Goedken ER; Marqusee S
    Proteins; 1998 Oct; 33(1):135-43. PubMed ID: 9741851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An enzymatically active chimeric HIV-1 reverse transcriptase (RT) with the RNase-H domain of murine leukemia virus RT exists as a monomer.
    Misra HS; Pandey PK; Pandey VN
    J Biol Chem; 1998 Apr; 273(16):9785-9. PubMed ID: 9545316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of the RNase H domain of Moloney murine leukemia virus reverse transcriptase.
    Nishimura K; Yokokawa K; Hisayoshi T; Fukatsu K; Kuze I; Konishi A; Mikami B; Kojima K; Yasukawa K
    Protein Expr Purif; 2015 Sep; 113():44-50. PubMed ID: 25959458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase.
    Stahl SJ; Kaufman JD; Vikić-Topić S; Crouch RJ; Wingfield PT
    Protein Eng; 1994 Sep; 7(9):1103-8. PubMed ID: 7530360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the moloney murine leukemia virus RNase H domain.
    Lim D; Gregorio GG; Bingman C; Martinez-Hackert E; Hendrickson WA; Goff SP
    J Virol; 2006 Sep; 80(17):8379-89. PubMed ID: 16912289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation.
    Konishi A; Hisayoshi T; Yokokawa K; Barrioluengo V; Menéndez-Arias L; Yasukawa K
    Biochem Biophys Res Commun; 2014 Nov; 454(2):269-74. PubMed ID: 25450388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirements for the catalysis of strand transfer synthesis by retroviral DNA polymerases.
    Buiser RG; DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    J Biol Chem; 1991 Jul; 266(20):13103-9. PubMed ID: 1712774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase.
    Davies JF; Hostomska Z; Hostomsky Z; Jordan SR; Matthews DA
    Science; 1991 Apr; 252(5002):88-95. PubMed ID: 1707186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.