These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 17095014)
1. The structural basis of alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. van Bueren AL; Boraston AB J Mol Biol; 2007 Jan; 365(3):555-60. PubMed ID: 17095014 [TBL] [Abstract][Full Text] [Related]
2. Alpha-glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens. Lammerts van Bueren A; Finn R; Ausió J; Boraston AB Biochemistry; 2004 Dec; 43(49):15633-42. PubMed ID: 15581376 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of Thermotoga maritima maltosyltransferase and its implications for the molecular basis of the novel transfer specificity. Roujeinikova A; Raasch C; Burke J; Baker PJ; Liebl W; Rice DW J Mol Biol; 2001 Sep; 312(1):119-31. PubMed ID: 11545590 [TBL] [Abstract][Full Text] [Related]
5. Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. Abe A; Yoshida H; Tonozuka T; Sakano Y; Kamitori S FEBS J; 2005 Dec; 272(23):6145-53. PubMed ID: 16302977 [TBL] [Abstract][Full Text] [Related]
6. A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. Boraston AB; Healey M; Klassen J; Ficko-Blean E; Lammerts van Bueren A; Law V J Biol Chem; 2006 Jan; 281(1):587-98. PubMed ID: 16230347 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Tan TC; Mijts BN; Swaminathan K; Patel BK; Divne C J Mol Biol; 2008 May; 378(4):852-70. PubMed ID: 18387632 [TBL] [Abstract][Full Text] [Related]
8. Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Xu J; Ren F; Huang CH; Zheng Y; Zhen J; Sun H; Ko TP; He M; Chen CC; Chan HC; Guo RT; Song H; Ma Y Proteins; 2014 Sep; 82(9):1685-93. PubMed ID: 24375572 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. Mikami B; Iwamoto H; Malle D; Yoon HJ; Demirkan-Sarikaya E; Mezaki Y; Katsuya Y J Mol Biol; 2006 Jun; 359(3):690-707. PubMed ID: 16650854 [TBL] [Abstract][Full Text] [Related]
10. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach. Viegas A; Brás NF; Cerqueira NM; Fernandes PA; Prates JA; Fontes CM; Bruix M; Romão MJ; Carvalho AL; Ramos MJ; Macedo AL; Cabrita EJ FEBS J; 2008 May; 275(10):2524-35. PubMed ID: 18422658 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for carbohydrate-binding specificity--a comparative assessment of two engineered carbohydrate-binding modules. von Schantz L; Håkansson M; Logan DT; Walse B; Osterlin J; Nordberg-Karlsson E; Ohlin M Glycobiology; 2012 Jul; 22(7):948-61. PubMed ID: 22434778 [TBL] [Abstract][Full Text] [Related]
12. Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. Notenboom V; Boraston AB; Chiu P; Freelove AC; Kilburn DG; Rose DR J Mol Biol; 2001 Dec; 314(4):797-806. PubMed ID: 11733998 [TBL] [Abstract][Full Text] [Related]
13. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites. Lammerts van Bueren A; Boraston AB J Mol Biol; 2004 Jul; 340(4):869-79. PubMed ID: 15223327 [TBL] [Abstract][Full Text] [Related]
14. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Hrmova M; Fincher GB Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065 [TBL] [Abstract][Full Text] [Related]
15. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Ihsanawati ; Kumasaka T; Kaneko T; Morokuma C; Yatsunami R; Sato T; Nakamura S; Tanaka N Proteins; 2005 Dec; 61(4):999-1009. PubMed ID: 16247799 [TBL] [Abstract][Full Text] [Related]
16. High-resolution crystal structures of Caldicellulosiruptor strain Rt8B.4 carbohydrate-binding module CBM27-1 and its complex with mannohexaose. Roske Y; Sunna A; Pfeil W; Heinemann U J Mol Biol; 2004 Jul; 340(3):543-54. PubMed ID: 15210353 [TBL] [Abstract][Full Text] [Related]
17. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. Ramón-Maiques S; Fernández-Murga ML; Gil-Ortiz F; Vagin A; Fita I; Rubio V J Mol Biol; 2006 Feb; 356(3):695-713. PubMed ID: 16376937 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of amylomaltase from thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. Przylas I; Tomoo K; Terada Y; Takaha T; Fujii K; Saenger W; Sträter N J Mol Biol; 2000 Feb; 296(3):873-86. PubMed ID: 10677288 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of TM1457 from Thermotoga maritima. Shin DH; Lou Y; Jancarik J; Yokota H; Kim R; Kim SH J Struct Biol; 2005 Nov; 152(2):113-7. PubMed ID: 16242963 [TBL] [Abstract][Full Text] [Related]
20. Neutron crystallographic studies reveal hydrogen bond and water-mediated interactions between a carbohydrate-binding module and its bound carbohydrate ligand. Fisher SZ; von Schantz L; Håkansson M; Logan DT; Ohlin M Biochemistry; 2015 Oct; 54(42):6435-8. PubMed ID: 26451738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]