These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17095034)

  • 1. Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography.
    Zheng YM; Yu HQ
    Water Res; 2007 Jan; 41(1):39-46. PubMed ID: 17095034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydraulic characteristics of aerobic granules using size exclusion chromatography.
    Adav SS; Chang CH; Lee DJ
    Biotechnol Bioeng; 2008 Mar; 99(4):791-9. PubMed ID: 17929314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeabilities of anaerobic CH4-producing granules.
    Mu Y; Yu HQ; Wang G
    Water Res; 2006 May; 40(9):1811-5. PubMed ID: 16626780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2007 Mar; 1144(1):14-29. PubMed ID: 17126846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling pore size distribution in cellulose rolled stationary phases.
    Keim C; Li C; Ladisch CM; Ladisch M
    Biotechnol Prog; 2002; 18(2):317-21. PubMed ID: 11934302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffer and salt concentration conditions.
    Tatárová I; Fáber R; Denoyel R; Polakovic M
    J Chromatogr A; 2009 Feb; 1216(6):941-7. PubMed ID: 19117574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of multiporous structure and oxygen transfer inside aerobic granules with the percolation model.
    Liu L; Sheng GP; Liu ZF; Li WW; Zeng RJ; Lee DJ; Liu JX; Yu HQ
    Environ Sci Technol; 2010 Nov; 44(22):8535-40. PubMed ID: 20964290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications.
    Luo X; Zhang L
    J Chromatogr A; 2010 Sep; 1217(38):5922-9. PubMed ID: 20723904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore size distribution in tablets measured with a morphological sieve.
    Wu YS; van Vliet LJ; Frijlink HW; van der Voort Maarschalk K
    Int J Pharm; 2007 Sep; 342(1-2):176-83. PubMed ID: 17580106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of pore structure of chromatographic adsorbents employed in separation of monoclonal antibodies using size-exclusion techniques.
    Tatárová I; Gramblicka M; Antosová M; Polakovic M
    J Chromatogr A; 2008 Jun; 1193(1-2):129-35. PubMed ID: 18456274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed characterisation of the flow resistance of commercial sub-2 micrometer reversed-phase columns.
    Cabooter D; Billen J; Terryn H; Lynen F; Sandra P; Desmet G
    J Chromatogr A; 2008 Jan; 1178(1-2):108-17. PubMed ID: 18082751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-exclusion reaction chromatography (SERC): a new technique for protein PEGylation.
    Fee CJ
    Biotechnol Bioeng; 2003 Apr; 82(2):200-6. PubMed ID: 12584761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule imaging of protein molecules in nanopores.
    Ma C; Yeung ES
    Anal Chem; 2010 Jan; 82(2):478-82. PubMed ID: 20000771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the interparticle void volume in packed beds via intraparticle Donnan exclusion.
    Jung S; Ehlert S; Pattky M; Tallarek U
    J Chromatogr A; 2010 Jan; 1217(5):696-704. PubMed ID: 20031142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of salinity on the morphological characteristics of aerobic granules.
    Li ZH; Wang XC
    Water Sci Technol; 2008; 58(12):2421-6. PubMed ID: 19092221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafiltration characteristics of pegylated proteins.
    Molek JR; Zydney AL
    Biotechnol Bioeng; 2006 Oct; 95(3):474-82. PubMed ID: 16736533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-exclusion separation of proteins using a biocompatible polymeric monolithic capillary column with mesoporosity.
    Li Y; Tolley HD; Lee ML
    J Chromatogr A; 2010 Dec; 1217(52):8181-5. PubMed ID: 21084091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of polyethylene glycol particles by simulated moving bed with size-exclusion chromatography.
    Liang MT; Liang RC
    J Chromatogr A; 2012 Mar; 1229():107-12. PubMed ID: 22293284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides.
    Li Y; Tolley HD; Lee ML
    Anal Chem; 2009 Jun; 81(11):4406-13. PubMed ID: 19405517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles.
    Persson P; Baybak O; Plieva F; Galaev IY; Mattiasson B; Nilsson B; Axelsson A
    Biotechnol Bioeng; 2004 Oct; 88(2):224-36. PubMed ID: 15449292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.