These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 1709528)

  • 1. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates.
    Berger B; Gaspar P; Verney C
    Trends Neurosci; 1991 Jan; 14(1):21-7. PubMed ID: 1709528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the noradrenergic, serotonergic, and dopaminergic innervation of neocortex.
    Foote SL; Morrison JH
    Curr Top Dev Biol; 1987; 21():391-423. PubMed ID: 3308332
    [No Abstract]   [Full Text] [Related]  

  • 3. Cortical specification of mice and men.
    Kennedy H; Dehay C
    Cereb Cortex; 1993; 3(3):171-86. PubMed ID: 8324368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further indication that distinct dopaminergic subsets project to the rat cerebral cortex: lack of colocalization with neurotensin in the superficial dopaminergic fields of the anterior cingulate, motor, retrosplenial and visual cortices.
    Febvret A; Berger B; Gaspar P; Verney C
    Brain Res; 1991 Apr; 547(1):37-52. PubMed ID: 1907216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum.
    Joel D; Weiner I
    Neuroscience; 2000; 96(3):451-74. PubMed ID: 10717427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase.
    Gaspar P; Berger B; Febvret A; Vigny A; Henry JP
    J Comp Neurol; 1989 Jan; 279(2):249-71. PubMed ID: 2563268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody.
    Williams SM; Goldman-Rakic PS
    Cereb Cortex; 1993; 3(3):199-222. PubMed ID: 8100725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine and the neural circuitry of primate prefrontal cortex: implications for schizophrenia research.
    Lewis DA; Hayes TL; Lund JS; Oeth KM
    Neuropsychopharmacology; 1992 Feb; 6(2):127-34. PubMed ID: 1610486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study.
    Berger B; Trottier S; Verney C; Gaspar P; Alvarez C
    J Comp Neurol; 1988 Jul; 273(1):99-119. PubMed ID: 3209731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catecholaminergic innervation of primate prefrontal cortex.
    Lewis DA
    J Neural Transm Suppl; 1992; 36():179-200. PubMed ID: 1527517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monoamine systems in the cerebral cortex: evidence for anatomical specificity.
    Papadopoulos GC; Parnavelas JG
    Prog Neurobiol; 1991; 36(3):195-200. PubMed ID: 2017550
    [No Abstract]   [Full Text] [Related]  

  • 12. Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys.
    Gaspar P; Stepniewska I; Kaas JH
    J Comp Neurol; 1992 Nov; 325(1):1-21. PubMed ID: 1362430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of mesocortical dopaminergic system in the rat in response to neonatal medial prefrontal cortex lesions. Concurrence with functional sparing.
    de Brabander JM; van Eden CG; de Bruin JP; Feenstra MG
    Brain Res; 1992 May; 581(1):1-9. PubMed ID: 1498659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesocortical dopaminergic neurons. 2. Electrophysiological consequences of terminal autoreceptor activation.
    Gariano RF; Sawyer SF; Tepper JM; Young SJ; Groves PM
    Brain Res Bull; 1989 Mar; 22(3):517-23. PubMed ID: 2713724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of mapping sensory cortex in primates: three of many remaining issues.
    Kaas JH
    Philos Trans R Soc Lond B Biol Sci; 2005 Apr; 360(1456):653-64. PubMed ID: 15937006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order-specific quantitative patterns of cortical gyrification.
    Pillay P; Manger PR
    Eur J Neurosci; 2007 May; 25(9):2705-12. PubMed ID: 17459107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones.
    Bannon MJ; Elliott PJ; Alpert JE; Goedert M; Iversen SD; Iversen LL
    Nature; 1983 Dec 22-1984 Jan 4; 306(5945):791-2. PubMed ID: 6197656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory findings of caloric restriction in rodents and primates.
    Higami Y; Yamaza H; Shimokawa I
    Adv Clin Chem; 2005; 39():211-37. PubMed ID: 16013673
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA
    J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats.
    Fink JS; Smith GP
    Neurosci Lett; 1980 Apr; 17(1-2):61-5. PubMed ID: 6820483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.