BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17095698)

  • 1. Selective etching of metallic carbon nanotubes by gas-phase reaction.
    Zhang G; Qi P; Wang X; Lu Y; Li X; Tu R; Bangsaruntip S; Mann D; Zhang L; Dai H
    Science; 2006 Nov; 314(5801):974-7. PubMed ID: 17095698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide.
    Johnston DE; Islam MF; Yodh AG; Johnson AT
    Nat Mater; 2005 Aug; 4(8):589-92. PubMed ID: 16030521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices.
    Ryu H; Kälblein D; Weitz RT; Ante F; Zschieschang U; Kern K; Schmidt OG; Klauk H
    Nanotechnology; 2010 Nov; 21(47):475207. PubMed ID: 21030776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.
    Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W
    Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the origin of preferential growth of semiconducting single-walled carbon nanotubes.
    Li Y; Peng S; Mann D; Cao J; Tu R; Cho KJ; Dai H
    J Phys Chem B; 2005 Apr; 109(15):6968-71. PubMed ID: 16851791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.
    Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P
    ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection.
    Li X; Tu X; Zaric S; Welsher K; Seo WS; Zhao W; Dai H
    J Am Chem Soc; 2007 Dec; 129(51):15770-1. PubMed ID: 18052285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of Semiconducting Single-Walled Carbon Nanotubes Array by Precisely Inhibiting Metallic Tubes Using ZrO
    Lin D; Yu Y; Li L; Zou M; Zhang J
    Small; 2021 Dec; 17(48):e2006605. PubMed ID: 33522113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective photochemical functionalization of surfactant-dispersed single wall carbon nanotubes in water.
    Alvarez NT; Kittrell C; Schmidt HK; Hauge RH; Engel PS; Tour JM
    J Am Chem Soc; 2008 Oct; 130(43):14227-33. PubMed ID: 18826225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound.
    Toyoda S; Yamaguchi Y; Hiwatashi M; Tomonari Y; Murakami H; Nakashima N
    Chem Asian J; 2007 Jan; 2(1):145-9. PubMed ID: 17441147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects.
    Kim YL; Li B; An X; Hahm MG; Chen L; Washington M; Ajayan PM; Nayak SK; Busnaina A; Kar S; Jung YJ
    ACS Nano; 2009 Sep; 3(9):2818-26. PubMed ID: 19725514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes.
    Jin SH; Dunham SN; Song J; Xie X; Kim JH; Lu C; Islam A; Du F; Kim J; Felts J; Li Y; Xiong F; Wahab MA; Menon M; Cho E; Grosse KL; Lee DJ; Chung HU; Pop E; Alam MA; King WP; Huang Y; Rogers JA
    Nat Nanotechnol; 2013 May; 8(5):347-55. PubMed ID: 23624697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential growth of single-walled carbon nanotubes with metallic conductivity.
    Harutyunyan AR; Chen G; Paronyan TM; Pigos EM; Kuznetsov OA; Hewaparakrama K; Kim SM; Zakharov D; Stach EA; Sumanasekera GU
    Science; 2009 Oct; 326(5949):116-20. PubMed ID: 19797656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type- and species-selective air etching of single-walled carbon nanotubes tracked with in situ Raman spectroscopy.
    Li-Pook-Than A; Lefebvre J; Finnie P
    ACS Nano; 2013 Aug; 7(8):6507-21. PubMed ID: 23837555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.
    Ghavami B; Raji M; Pedram H
    Nanotechnology; 2011 Aug; 22(34):345706. PubMed ID: 21811011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.