BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17095930)

  • 1. Interaction between the AMP-activated protein kinase and mTOR signaling pathways.
    Kimball SR
    Med Sci Sports Exerc; 2006 Nov; 38(11):1958-64. PubMed ID: 17095930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR.
    Williamson DL; Bolster DR; Kimball SR; Jefferson LS
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E80-9. PubMed ID: 16760336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase.
    Du M; Shen QW; Zhu MJ; Ford SP
    J Anim Sci; 2007 Apr; 85(4):919-27. PubMed ID: 17178807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTOR signaling and the molecular adaptation to resistance exercise.
    Bodine SC
    Med Sci Sports Exerc; 2006 Nov; 38(11):1950-7. PubMed ID: 17095929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle.
    Benziane B; Burton TJ; Scanlan B; Galuska D; Canny BJ; Chibalin AV; Zierath JR; Stepto NK
    Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1427-38. PubMed ID: 18827172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose.
    Jiang W; Zhu Z; Thompson HJ
    Mol Carcinog; 2008 Aug; 47(8):616-28. PubMed ID: 18247380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
    Yang X; Yang C; Farberman A; Rideout TC; de Lange CF; France J; Fan MZ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glucose transport by the AMP-activated protein kinase.
    Fujii N; Aschenbach WG; Musi N; Hirshman MF; Goodyear LJ
    Proc Nutr Soc; 2004 May; 63(2):205-10. PubMed ID: 15294031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway.
    Han B; Tong J; Zhu MJ; Ma C; Du M
    Mol Reprod Dev; 2008 May; 75(5):810-7. PubMed ID: 18033679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat.
    Chotechuang N; Azzout-Marniche D; Bos C; Chaumontet C; Gausserès N; Steiler T; Gaudichon C; Tomé D
    Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1313-23. PubMed ID: 19738034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells.
    Baumann P; Mandl-Weber S; Emmerich B; Straka C; Schmidmaier R
    Exp Cell Res; 2007 Oct; 313(16):3592-603. PubMed ID: 17669398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adiponectin signals in prostate cancer cells through Akt to activate the mammalian target of rapamycin pathway.
    Barb D; Neuwirth A; Mantzoros CS; Balk SP
    Endocr Relat Cancer; 2007 Dec; 14(4):995-1005. PubMed ID: 18045951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The AMP-activated protein kinase: more than an energy sensor.
    Hue L; Rider MH
    Essays Biochem; 2007; 43():121-37. PubMed ID: 17705797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.
    Lira VA; Soltow QA; Long JH; Betters JL; Sellman JE; Criswell DS
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E1062-8. PubMed ID: 17666490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hypothalamic AMP-kinase in food intake regulation.
    Minokoshi Y; Shiuchi T; Lee S; Suzuki A; Okamoto S
    Nutrition; 2008 Sep; 24(9):786-90. PubMed ID: 18725075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways.
    Guo D; Chien S; Shyy JY
    Circ Res; 2007 Mar; 100(4):564-71. PubMed ID: 17272808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPK-mediated regulation of transcription in skeletal muscle.
    McGee SL; Hargreaves M
    Clin Sci (Lond); 2010 Jan; 118(8):507-18. PubMed ID: 20088830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways.
    Chiang PC; Lin SC; Pan SL; Kuo CH; Tsai IL; Kuo MT; Wen WC; Chen P; Guh JH
    Biochem Pharmacol; 2010 Jan; 79(2):162-71. PubMed ID: 19723512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protecting muscle ATP: positive roles for peripheral defense mechanisms-introduction.
    Myburgh KH
    Med Sci Sports Exerc; 2004 Jan; 36(1):16-9. PubMed ID: 14707762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.