BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17096444)

  • 1. A structural and functional model for dioxygenases with a 2-His-1-carboxylate triad.
    Oldenburg PD; Ke CY; Tipton AA; Shteinman AA; Que L
    Angew Chem Int Ed Engl; 2006 Dec; 45(47):7975-8. PubMed ID: 17096444
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad.
    Bassan A; Borowski T; Siegbahn PE
    Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of varying carboxylate ligation on the electronic environment of N2O(x) (x = 1-3) nonheme iron: a DFT analysis.
    Cappillino PJ; McNally JS; Wang F; Caradonna JP
    Dalton Trans; 2012 Jan; 41(2):474-83. PubMed ID: 22042235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate.
    Mehn MP; Fujisawa K; Hegg EL; Que L
    J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the catalytic potential of the 3-His mononuclear nonheme Fe(II) center: discovery and characterization of an unprecedented maltol cleavage activity.
    Di Giuro CM; Buongiorno D; Leitner E; Straganz GD
    J Inorg Biochem; 2011 Sep; 105(9):1204-11. PubMed ID: 21718656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One motif--many different reactions.
    Que L
    Nat Struct Biol; 2000 Mar; 7(3):182-4. PubMed ID: 10700270
    [No Abstract]   [Full Text] [Related]  

  • 7. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases.
    Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ
    J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad.
    Paria S; Halder P; Paine TK
    Inorg Chem; 2010 May; 49(10):4518-23. PubMed ID: 20392074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural "snapshots" along reaction pathways of non-heme iron enzymes.
    Emerson JP; Farquhar ER; Que L
    Angew Chem Int Ed Engl; 2007; 46(45):8553-6. PubMed ID: 17924385
    [No Abstract]   [Full Text] [Related]  

  • 10. Axial coordination of carboxylate activates the non-heme FeIV=O unit.
    Rohde JU; Que L
    Angew Chem Int Ed Engl; 2005 Apr; 44(15):2255-8. PubMed ID: 15739239
    [No Abstract]   [Full Text] [Related]  

  • 11. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.
    Bruijnincx PC; van Koten G; Klein Gebbink RJ
    Chem Soc Rev; 2008 Dec; 37(12):2716-44. PubMed ID: 19020684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD and MCD of CytC3 and taurine dioxygenase: role of the facial triad in alpha-KG-dependent oxygenases.
    Neidig ML; Brown CD; Light KM; Fujimori DG; Nolan EM; Price JC; Barr EW; Bollinger JM; Krebs C; Walsh CT; Solomon EI
    J Am Chem Soc; 2007 Nov; 129(46):14224-31. PubMed ID: 17967013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-his triad in Dke1: comparisons to the classical facial triad.
    Diebold AR; Neidig ML; Moran GR; Straganz GD; Solomon EI
    Biochemistry; 2010 Aug; 49(32):6945-52. PubMed ID: 20695531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeolite framework stabilized copper complex inspired by the 2-His-1-carboxylate facial triad motif yielding oxidation catalysts.
    Kervinen K; Bruijnincx PC; Beale AM; Mesu JG; van Koten G; Klein Gebbink RJ; Weckhuysen BM
    J Am Chem Soc; 2006 Mar; 128(10):3208-17. PubMed ID: 16522101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics.
    Tshuva EY; Lippard SJ
    Chem Rev; 2004 Feb; 104(2):987-1012. PubMed ID: 14871147
    [No Abstract]   [Full Text] [Related]  

  • 16. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases.
    Kovaleva EG; Neibergall MB; Chakrabarty S; Lipscomb JD
    Acc Chem Res; 2007 Jul; 40(7):475-83. PubMed ID: 17567087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One metal-two pathways to the carboxylate-enhanced, iron-containing quercetinase mimics.
    Baráth G; Kaizer J; Speier G; Párkányi L; Kuzmann E; Vértes A
    Chem Commun (Camb); 2009 Jun; (24):3630-2. PubMed ID: 19521631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction coordinate analysis for beta-diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1.
    Straganz GD; Nidetzky B
    J Am Chem Soc; 2005 Sep; 127(35):12306-14. PubMed ID: 16131208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational studies of DNA base repair mechanisms by nonheme iron dioxygenases: selective epoxidation and hydroxylation pathways.
    Latifi R; Minnick JL; Quesne MG; de Visser SP; Tahsini L
    Dalton Trans; 2020 Apr; 49(14):4266-4276. PubMed ID: 32141456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bis(mu-alkylperoxo)dinickel(II) complex as a reaction intermediate for the oxidation of the methyl groups of the Me(2)-tpa ligand to carboxylate and alkoxide ligands.
    Cho J; Furutachi H; Fujinami S; Suzuki M
    Angew Chem Int Ed Engl; 2004 Jun; 43(25):3300-3. PubMed ID: 15213958
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.