These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17096444)

  • 21. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates.
    Costas M; Mehn MP; Jensen MP; Que L
    Chem Rev; 2004 Feb; 104(2):939-86. PubMed ID: 14871146
    [No Abstract]   [Full Text] [Related]  

  • 22. Omega oxygenases: nonheme-iron enzymes and P450 cytochromes.
    Coon MJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):378-85. PubMed ID: 16165094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XANES study of the carboxylate binding mode in two pterin hydroxylases.
    Mijovilovich A
    Chem Biodivers; 2008 Oct; 5(10):2131-2139. PubMed ID: 18972503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases.
    Miller KR; Paretsky JD; Follmer AH; Heinisch T; Mittra K; Gul S; Kim IS; Fuller FD; Batyuk A; Sutherlin KD; Brewster AS; Bhowmick A; Sauter NK; Kern J; Yano J; Green MT; Ward TR; Borovik AS
    Inorg Chem; 2020 May; 59(9):6000-6009. PubMed ID: 32309932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calorimetric assessment of Fe(2+) binding to α-ketoglutarate/taurine dioxygenase: ironing out the energetics of metal coordination by the 2-His-1-carboxylate facial triad.
    Henderson KL; Müller TA; Hausinger RP; Emerson JP
    Inorg Chem; 2015 Mar; 54(5):2278-83. PubMed ID: 25668068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. O
    Solomon EI; Goudarzi S; Sutherlin KD
    Biochemistry; 2016 Nov; 55(46):6363-6374. PubMed ID: 27792301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes.
    Koehntop KD; Emerson JP; Que L
    J Biol Inorg Chem; 2005 Mar; 10(2):87-93. PubMed ID: 15739104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinorganic reaction mechanisms: from high-valent iron to bioorganometallic chemistry.
    Slep LD; Neese F
    Angew Chem Int Ed Engl; 2003 Jul; 42(26):2942-5. PubMed ID: 12851944
    [No Abstract]   [Full Text] [Related]  

  • 31. Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity.
    Schlosrich J; Eley KL; Crowley PJ; Bugg TD
    Chembiochem; 2006 Dec; 7(12):1899-908. PubMed ID: 17051653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carboxylate coordination chemistry of a mononuclear Ni(II) center in a hydrophobic or hydrogen bond donor secondary environment: relevance to acireductone dioxygenase.
    Szajna-Fuller E; Chambers BM; Arif AM; Berreau LM
    Inorg Chem; 2007 Jul; 46(14):5486-98. PubMed ID: 17288413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of the 2-His-1-carboxylate facial triad in mononuclear iron(II) and zinc(II) models of metalloenzyme active sites.
    Friese SJ; Kucera BE; Que L; Tolman WB
    Inorg Chem; 2006 Oct; 45(20):8003-5. PubMed ID: 16999395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How to tailor non-ribosomal peptide products--new clues about the structures and mechanisms of modifying enzymes.
    Samel SA; Marahiel MA; Essen LO
    Mol Biosyst; 2008 May; 4(5):387-93. PubMed ID: 18414736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerobic photooxidative cleavage of epoxides to carboxylic acids using magnesium bromide.
    Yamaguchi T; Matsusaki Y; Tada N; Miura T; Itoh A
    Photochem Photobiol Sci; 2013 Mar; 12(3):417-20. PubMed ID: 23178821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic Insight on the Activity and Substrate Selectivity of Nonheme Iron Dioxygenases.
    de Visser SP
    Chem Rec; 2018 Oct; 18(10):1501-1516. PubMed ID: 29878456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regiospecific ligand oxygenation in iron complexes of a carboxylate-containing ligand mediated by a proposed Fe(v)-oxo species.
    Nielsen A; Larsen FB; Bond AD; McKenzie CJ
    Angew Chem Int Ed Engl; 2006 Feb; 45(10):1602-6. PubMed ID: 16470759
    [No Abstract]   [Full Text] [Related]  

  • 38. Kinetics and mechanisms of formation and reactivity of non-heme iron oxygen intermediates.
    Kryatov SV; Rybak-Akimova EV; Schindler S
    Chem Rev; 2005 Jun; 105(6):2175-226. PubMed ID: 15941212
    [No Abstract]   [Full Text] [Related]  

  • 39. Post-translational self-hydroxylation: a probe for oxygen activation mechanisms in non-heme iron enzymes.
    Farquhar ER; Koehntop KD; Emerson JP; Que L
    Biochem Biophys Res Commun; 2005 Dec; 338(1):230-9. PubMed ID: 16165090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen activating nonheme iron enzymes.
    Lange SJ; Que L
    Curr Opin Chem Biol; 1998 Apr; 2(2):159-72. PubMed ID: 9667935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.