These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 17096548)
1. Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Shah NM; Pool MD; Metters AT Biomacromolecules; 2006 Nov; 7(11):3171-7. PubMed ID: 17096548 [TBL] [Abstract][Full Text] [Related]
3. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Du JZ; Sun TM; Weng SQ; Chen XS; Wang J Biomacromolecules; 2007 Nov; 8(11):3375-81. PubMed ID: 17902689 [TBL] [Abstract][Full Text] [Related]
5. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336 [TBL] [Abstract][Full Text] [Related]
6. Novel thymopentin release systems prepared from bioresorbable PLA-PEG-PLA hydrogels. Zhang Y; Wu X; Han Y; Mo F; Duan Y; Li S Int J Pharm; 2010 Feb; 386(1-2):15-22. PubMed ID: 19895878 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Martens PJ; Bryant SJ; Anseth KS Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723 [TBL] [Abstract][Full Text] [Related]
8. Fundamental studies of biodegradable hydrogels as cartilage replacement materials. Metters AT; Anseth KS; Bowman CN Biomed Sci Instrum; 1999; 35():33-8. PubMed ID: 11143373 [TBL] [Abstract][Full Text] [Related]
9. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Mao H; Shan G; Bao Y; Wu ZL; Pan P Soft Matter; 2016 May; 12(20):4628-37. PubMed ID: 27121732 [TBL] [Abstract][Full Text] [Related]
10. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Bryant SJ; Bender RJ; Durand KL; Anseth KS Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique. Park SJ; Kim SH J Colloid Interface Sci; 2004 Mar; 271(2):336-41. PubMed ID: 14972610 [TBL] [Abstract][Full Text] [Related]
12. Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel. Andreopoulos FM; Roberts MJ; Bentley MD; Harris JM; Beckman EJ; Russell AJ Biotechnol Bioeng; 1999 Dec; 65(5):579-88. PubMed ID: 10516584 [TBL] [Abstract][Full Text] [Related]
13. PEG-PLA hydrogels by stereocomplexation for tissue engineering of cartilage. Hiemstra C; Zhong Z; Dijkstra PJ; Feijen J J Control Release; 2005 Jan; 101(1-3):332-4. PubMed ID: 15751174 [No Abstract] [Full Text] [Related]
14. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Shin H; Temenoff JS; Mikos AG Biomacromolecules; 2003; 4(3):552-60. PubMed ID: 12741769 [TBL] [Abstract][Full Text] [Related]
15. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801 [TBL] [Abstract][Full Text] [Related]
16. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro. Qiao M; Chen D; Ma X; Hu H Pharmazie; 2006 Mar; 61(3):199-202. PubMed ID: 16599259 [TBL] [Abstract][Full Text] [Related]
17. Micelle-like nanoparticles of PLA-PEG-PLA triblock copolymer as chemotherapeutic carrier. Venkatraman SS; Jie P; Min F; Freddy BY; Leong-Huat G Int J Pharm; 2005 Jul; 298(1):219-32. PubMed ID: 15946811 [TBL] [Abstract][Full Text] [Related]
18. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. Shim MS; Lee HT; Shim WS; Park I; Lee H; Chang T; Kim SW; Lee DS J Biomed Mater Res; 2002 Aug; 61(2):188-96. PubMed ID: 12007198 [TBL] [Abstract][Full Text] [Related]
19. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. Bryant SJ; Anseth KS J Biomed Mater Res A; 2003 Jan; 64(1):70-9. PubMed ID: 12483698 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride. Li F; Li S; Ghzaoui AE; Nouailhas H; Zhuo R Langmuir; 2007 Feb; 23(5):2778-83. PubMed ID: 17243742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]