These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 17097093)
21. Quantifying hydrogen bonding in QSAR and molecular modeling. Raevsky OA; Skvortsov VS SAR QSAR Environ Res; 2005 Jun; 16(3):287-300. PubMed ID: 15804815 [TBL] [Abstract][Full Text] [Related]
22. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions. Goodarzi M; Jensen R; Vander Heyden Y J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Dec; 910():84-94. PubMed ID: 22341354 [TBL] [Abstract][Full Text] [Related]
23. A topological sub-structural approach for predicting human intestinal absorption of drugs. Pérez MA; Sanz MB; Torres LR; Avalos RG; González MP; Díaz HG Eur J Med Chem; 2004 Nov; 39(11):905-16. PubMed ID: 15501539 [TBL] [Abstract][Full Text] [Related]
25. Prediction of drug intestinal absorption by new linear and non-linear QSPR. Talevi A; Goodarzi M; Ortiz EV; Duchowicz PR; Bellera CL; Pesce G; Castro EA; Bruno-Blanch LE Eur J Med Chem; 2011 Jan; 46(1):218-28. PubMed ID: 21112128 [TBL] [Abstract][Full Text] [Related]
26. Retention prediction of peptides based on uninformative variable elimination by partial least squares. Put R; Daszykowski M; Baczek T; Vander Heyden Y J Proteome Res; 2006 Jul; 5(7):1618-25. PubMed ID: 16823969 [TBL] [Abstract][Full Text] [Related]
27. Computational prediction of oral drug absorption based on absorption rate constants in humans. Linnankoski J; Mäkelä JM; Ranta VP; Urtti A; Yliperttula M J Med Chem; 2006 Jun; 49(12):3674-81. PubMed ID: 16759110 [TBL] [Abstract][Full Text] [Related]
28. Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. Lázaro E; Ràfols C; Abraham MH; Rosés M J Med Chem; 2006 Aug; 49(16):4861-70. PubMed ID: 16884298 [TBL] [Abstract][Full Text] [Related]
29. Passive oral drug absorption can be predicted more reliably by experimental than computational models--fact or myth. Linnankoski J; Ranta VP; Yliperttula M; Urtti A Eur J Pharm Sci; 2008 Jul; 34(2-3):129-39. PubMed ID: 18455374 [TBL] [Abstract][Full Text] [Related]
30. Theoretical analysis on retention behavior of pigments in reversed-phase high-performance liquid chromatographic (HPLC). Song Y; Zhou J; Song Y; Xie J; Ye Y Comput Biol Med; 2007 Mar; 37(3):315-9. PubMed ID: 16716287 [TBL] [Abstract][Full Text] [Related]
32. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study. Deconinck E; Zhang MH; Petitet F; Dubus E; Ijjaali I; Coomans D; Vander Heyden Y Anal Chim Acta; 2008 Feb; 609(1):13-23. PubMed ID: 18243869 [TBL] [Abstract][Full Text] [Related]
33. Novel approaches for retention time prediction of oligonucleotides in ion-pair reversed-phase high-performance liquid chromatography. Lei B; Li S; Xi L; Li J; Liu H; Yao X J Chromatogr A; 2009 May; 1216(20):4434-9. PubMed ID: 19324364 [TBL] [Abstract][Full Text] [Related]
34. Importance of retention data from affinity and reverse-phase high-performance liquid chromatography on antitumor activity prediction of imidazoacridinones using QSAR strategy. Koba M; Bączek T; Marszałł MP J Pharm Biomed Anal; 2012 May; 64-65():87-93. PubMed ID: 22417615 [TBL] [Abstract][Full Text] [Related]
35. Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships. Michel M; Baczek T; Studzińska S; Bodzioch K; Jonsson T; Kaliszan R; Buszewski B J Chromatogr A; 2007 Dec; 1175(1):49-54. PubMed ID: 17980378 [TBL] [Abstract][Full Text] [Related]
36. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533 [TBL] [Abstract][Full Text] [Related]
37. Role of physicochemical properties in the estimation of skin permeability: in vitro data assessment by Partial Least-Squares Regression. Chauhan P; Shakya M SAR QSAR Environ Res; 2010 Jul; 21(5-6):481-94. PubMed ID: 20818583 [TBL] [Abstract][Full Text] [Related]
38. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase. Hemmateenejad B; Shamsipur M; Safavi A; Sharghi H; Amiri AA Talanta; 2008 Oct; 77(1):351-9. PubMed ID: 18804645 [TBL] [Abstract][Full Text] [Related]
39. Prediction of pesticides chromatographic lipophilicity from the computational molecular descriptors. Casoni D; Petre J; David V; Sârbu C J Sep Sci; 2011 Feb; 34(3):247-54. PubMed ID: 21268246 [TBL] [Abstract][Full Text] [Related]
40. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. Hou T; Wang J; Li Y J Chem Inf Model; 2007; 47(6):2408-15. PubMed ID: 17929911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]