These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17097182)

  • 1. A novel route to fabricate the biomedical material: structure strategy and the biologically active ions controllable release.
    Gou Z; Weng W; Yan W; Du P; Han G; Wang Z
    J Control Release; 2006 Dec; 116(3):360-4. PubMed ID: 17097182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring of multilayered core-shell nanostructure for multicomponent administration and controllable release of biologically active ions.
    Gou Z; Weng W; Du P; Han G; Yan W
    J Biomed Mater Res A; 2008 Jun; 85(4):909-18. PubMed ID: 17896764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous silica nanotubes coated with multilayered polyelectrolytes for pH-controlled drug release.
    Yang YJ; Tao X; Hou Q; Ma Y; Chen XL; Chen JF
    Acta Biomater; 2010 Aug; 6(8):3092-100. PubMed ID: 20197128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-sensitive silica nanospheres for controlled drug release.
    Hu SH; Liu TY; Huang HY; Liu DM; Chen SY
    Langmuir; 2008 Jan; 24(1):239-44. PubMed ID: 18052081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres.
    Xia W; Grandfield K; Schwenke A; Engqvist H
    Nanotechnology; 2011 Jul; 22(30):305610. PubMed ID: 21730753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure.
    Zhao W; Gu J; Zhang L; Chen H; Shi J
    J Am Chem Soc; 2005 Jun; 127(25):8916-7. PubMed ID: 15969545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release.
    Li ZZ; Xu SA; Wen LX; Liu F; Liu AQ; Wang Q; Sun HY; Yu W; Chen JF
    J Control Release; 2006 Mar; 111(1-2):81-8. PubMed ID: 16388871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery.
    Huang CC; Huang W; Yeh CS
    Biomaterials; 2011 Jan; 32(2):556-64. PubMed ID: 20875684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate:Eu3+ core-shell nanoparticles.
    Dembski S; Milde M; Dyrba M; Schweizer S; Gellermann C; Klockenbring T
    Langmuir; 2011 Dec; 27(23):14025-32. PubMed ID: 21988231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical capping of silica nanotubes for encapsulation of molecules.
    Yu J; Bai X; Suh J; Lee SB; Son SJ
    J Am Chem Soc; 2009 Nov; 131(43):15574-5. PubMed ID: 19824675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure.
    Zhu Y; Shi J; Shen W; Dong X; Feng J; Ruan M; Li Y
    Angew Chem Int Ed Engl; 2005 Aug; 44(32):5083-7. PubMed ID: 16015668
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of surface coating on the controlled release of vitamin B1 from mesoporous silica tablets.
    Wu Z; Jiang Y; Kim T; Lee K
    J Control Release; 2007 Jun; 119(2):215-21. PubMed ID: 17434225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings.
    Bernardos A; Aznar E; Coll C; Martínez-Mañez R; Barat JM; Marcos MD; Sancenón F; Benito A; Soto J
    J Control Release; 2008 Nov; 131(3):181-9. PubMed ID: 18727946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulated zinc salt increases the diffusion of protein through PLG films.
    Fredenberg S; Reslow M; Axelsson A
    Int J Pharm; 2009 Mar; 370(1-2):47-53. PubMed ID: 19073244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strontium substitution in bioactive calcium phosphates: a first-principles study.
    Matsunaga K; Murata H
    J Phys Chem B; 2009 Mar; 113(11):3584-9. PubMed ID: 19243110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs.
    Rim HP; Min KH; Lee HJ; Jeong SY; Lee SC
    Angew Chem Int Ed Engl; 2011 Sep; 50(38):8853-7. PubMed ID: 21826770
    [No Abstract]   [Full Text] [Related]  

  • 18. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme.
    Rawat M; Singh D; Saraf S; Saraf S
    Drug Dev Ind Pharm; 2008 Feb; 34(2):181-8. PubMed ID: 18302037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the release kinetics through the control of the permeability of the layer-by-layer assembly: a review.
    Mansouri S; Winnik FM; Tabrizian M
    Expert Opin Drug Deliv; 2009 Jun; 6(6):585-97. PubMed ID: 19480609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.
    Bele M; Hribar G; Campelj S; Makovec D; Gaberc-Porekar V; Zorko M; Gaberscek M; Jamnik J; Venturini P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 May; 867(1):160-4. PubMed ID: 18400567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.