BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17097266)

  • 1. Distribution of NMDA receptor subunit NR1 in arctic ground squirrel central nervous system.
    Zhao HW; Christian SL; Castillo MR; Bult-Ito A; Drew KL
    J Chem Neuroanat; 2006 Dec; 32(2-4):196-207. PubMed ID: 17097266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased NR1 phosphorylation and decreased NMDAR function in hibernating Arctic ground squirrels.
    Zhao HW; Ross AP; Christian SL; Buchholz JN; Drew KL
    J Neurosci Res; 2006 Aug; 84(2):291-8. PubMed ID: 16676330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent tolerance to oxygen and nutrient deprivation and N-methyl-D-aspartate in cultured hippocampal slices from hibernating Arctic ground squirrel.
    Ross AP; Christian SL; Zhao HW; Drew KL
    J Cereb Blood Flow Metab; 2006 Sep; 26(9):1148-56. PubMed ID: 16395285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of NMDA-type glutamate receptors induces arousal from torpor in hibernating arctic ground squirrels (Urocitellus parryii).
    Jinka TR; Rasley BT; Drew KL
    J Neurochem; 2012 Sep; 122(5):934-40. PubMed ID: 22697356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circannual rhythm in body temperature, torpor, and sensitivity to A₁ adenosine receptor agonist in arctic ground squirrels.
    Olson JM; Jinka TR; Larson LK; Danielson JJ; Moore JT; Carpluck J; Drew KL
    J Biol Rhythms; 2013 Jun; 28(3):201-7. PubMed ID: 23735499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel.
    Orr AL; Lohse LA; Drew KL; Hermes-Lima M
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jun; 153(2):213-21. PubMed ID: 19233307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arctic ground squirrel hippocampus tolerates oxygen glucose deprivation independent of hibernation season even when not hibernating and after ATP depletion, acidosis, and glutamate efflux.
    Bhowmick S; Moore JT; Kirschner DL; Drew KL
    J Neurochem; 2017 Jul; 142(1):160-170. PubMed ID: 28222226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus.
    Paupard MC; Friedman LK; Zukin RS
    Neuroscience; 1997 Jul; 79(2):399-409. PubMed ID: 9200724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAPKs are differentially modulated in arctic ground squirrels during hibernation.
    Zhu X; Smith MA; Perry G; Wang Y; Ross AP; Zhao HW; Lamanna JC; Drew KL
    J Neurosci Res; 2005 Jun; 80(6):862-8. PubMed ID: 15884016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arctic ground squirrel (Spermophilus parryii) hippocampal neurons tolerate prolonged oxygen-glucose deprivation and maintain baseline ERK1/2 and JNK activation despite drastic ATP loss.
    Christian SL; Ross AP; Zhao HW; Kristenson HJ; Zhan X; Rasley BT; Bickler PE; Drew KL
    J Cereb Blood Flow Metab; 2008 Jul; 28(7):1307-19. PubMed ID: 18398417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical localization of N-methyl-D-aspartate receptor subunits in the adult murine hippocampal formation: evidence for a unique role of the NR2D subunit.
    Thompson CL; Drewery DL; Atkins HD; Stephenson FA; Chazot PL
    Brain Res Mol Brain Res; 2002 Jun; 102(1-2):55-61. PubMed ID: 12191494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat.
    Coultrap SJ; Nixon KM; Alvestad RM; Valenzuela CF; Browning MD
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):104-11. PubMed ID: 15857673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turnover analysis of N-methyl-D-aspartate receptor subunit NR1 protein in PC12 cells.
    Vazhappilly R; Sucher NJ
    Neurosci Lett; 2002 Feb; 318(3):153-7. PubMed ID: 11803122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary fatty acid composition and the hibernation patterns in free-ranging arctic ground squirrels.
    Frank CL; Karpovich S; Barnes BM
    Physiol Biochem Zool; 2008; 81(4):486-95. PubMed ID: 18513150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in hippocampal histamine receptors across the hibernation cycle in ground squirrels.
    Sallmen T; Lozada AF; Anichtchik OV; Beckman AL; Leurs R; Panula P
    Hippocampus; 2003; 13(6):745-54. PubMed ID: 12962318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbate and glutathione regulation in hibernating ground squirrels.
    Drew KL; Osborne PG; Frerichs KU; Hu Y; Koren RE; Hallenbeck JM; Rice ME
    Brain Res; 1999 Dec; 851(1-2):1-8. PubMed ID: 10642822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii).
    Knight JE; Narus EN; Martin SL; Jacobson A; Barnes BM; Boyer BB
    Mol Cell Biol; 2000 Sep; 20(17):6374-9. PubMed ID: 10938114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.
    MacDonald JF; Jackson MF; Beazely MA
    Crit Rev Neurobiol; 2006; 18(1-2):71-84. PubMed ID: 17725510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional and laminar differences in synaptic localization of NMDA receptor subunit NR1 splice variants in rat visual cortex and hippocampus.
    Johnson RR; Jiang X; Burkhalter A
    J Comp Neurol; 1996 May; 368(3):335-55. PubMed ID: 8725343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shotgun proteomics analysis of hibernating arctic ground squirrels.
    Shao C; Liu Y; Ruan H; Li Y; Wang H; Kohl F; Goropashnaya AV; Fedorov VB; Zeng R; Barnes BM; Yan J
    Mol Cell Proteomics; 2010 Feb; 9(2):313-26. PubMed ID: 19955082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.