BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 170973)

  • 21. Chemical modification of fructose bisphosphate aldolase from Trypanosoma brucei compared to aldolase from rabbit muscle and Staphylococcus aureus.
    Callens M; Opperdoes FR
    Mol Biochem Parasitol; 1991 Jul; 47(1):11-7. PubMed ID: 1857380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.
    Jacques B; Coinçon M; Sygusch J
    J Biol Chem; 2018 May; 293(20):7737-7753. PubMed ID: 29593097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of mono- and divalent metal cations in the catalysis by yeast aldolase.
    Kadonaga JT; Knowles JR
    Biochemistry; 1983 Jan; 22(1):130-6. PubMed ID: 6338913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis.
    Plaumann M; Pelzer-Reith B; Martin WF; Schnarrenberger C
    Curr Genet; 1997 May; 31(5):430-8. PubMed ID: 9162115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in the quaternary structure of three lactic acid bacteria aldolases. Evidence for the existence of a class I and class II aldolase in Lactobacillus casei.
    London J
    J Biol Chem; 1974 Dec; 249(24):7977-83. PubMed ID: 4214814
    [No Abstract]   [Full Text] [Related]  

  • 27. Triosephosphate isomerases and aldolases from light- and dark-grown Euglena gracilis.
    Mo Y; Harris BG; Gracy RW
    Arch Biochem Biophys; 1973 Aug; 157(2):580-7. PubMed ID: 4199859
    [No Abstract]   [Full Text] [Related]  

  • 28. Kinetic properties of fructose bisphosphate aldolase from Trypanosoma brucei compared to aldolase from rabbit muscle and Staphylococcus aureus.
    Callens M; Kuntz DA; Opperdoes FR
    Mol Biochem Parasitol; 1991 Jul; 47(1):1-9. PubMed ID: 1857377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stereochemistry of nonnatural aldol reactions catalyzed by DHAP aldolases.
    Schoevaart R; van Rantwijk F; Sheldon RA
    Biotechnol Bioeng; 2000 Nov; 70(3):349-52. PubMed ID: 10992239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterisation of an unusually heat-stable and acid/base-stable class I fructose-1,6-bisphosphate aldolase from Staphylococcus aureus.
    Götz F; Fischer S; Schleifer KH
    Eur J Biochem; 1980; 108(1):295-301. PubMed ID: 7408851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concentration and partitioning of intermediates in the fructose bisphosphate aldolase reaction. Comparison of the muscle and liver enzymes.
    Rose IA; Warms JV; Kuo DJ
    J Biol Chem; 1987 Jan; 262(2):692-701. PubMed ID: 3805004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid sequence around the active site of two class I fructose-1,6-bisphosphate aldolases from staphylococci.
    Fischer S; Tsugita A
    Eur J Biochem; 1982 Nov; 128(2-3):343-8. PubMed ID: 7151782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification, subunit structure and immunological comparison of fructose-bisphosphate aldolases from spinach and corn leaves.
    Krüger I; Schnarrenberger C
    Eur J Biochem; 1983 Oct; 136(1):101-6. PubMed ID: 6617652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperative effect of fructose bisphosphate and glyceraldehyde-3-phosphate dehydrogenase on aldolase action.
    Neuzil J; Danielson H; Welch GR; Ovádi J
    Biochim Biophys Acta; 1990 Mar; 1037(3):307-12. PubMed ID: 2106914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fructose 1,6-bisphosphate: isomeric composition, kinetics, and substrate specificity for the aldolases.
    Midelfort CF; Gupta RK; Rose IA
    Biochemistry; 1976 May; 15(10):2178-85. PubMed ID: 776219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aldolases of the DhnA family: a possible solution to the problem of pentose and hexose biosynthesis in archaea.
    Galperin MY; Aravind L; Koonin EV
    FEMS Microbiol Lett; 2000 Feb; 183(2):259-64. PubMed ID: 10675594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular cloning, nucleotide sequence and fine-structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1,6-biphosphate aldolase to class I and class II aldolases.
    von der Osten CH; Barbas CF; Wong CH; Sinskey AJ
    Mol Microbiol; 1989 Nov; 3(11):1625-37. PubMed ID: 2615658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional characterization of an extreme thermophilic class II fructose-1,6-bisphosphate aldolase.
    De Montigny C; Sygusch J
    Eur J Biochem; 1996 Oct; 241(1):243-8. PubMed ID: 8898912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of Escherichia coli.
    Alefounder PR; Baldwin SA; Perham RN; Short NJ
    Biochem J; 1989 Jan; 257(2):529-34. PubMed ID: 2649077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conserved residues in the mechanism of the E. coli Class II FBP-aldolase.
    Plater AR; Zgiby SM; Thomson GJ; Qamar S; Wharton CW; Berry A
    J Mol Biol; 1999 Jan; 285(2):843-55. PubMed ID: 9878448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.