BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17097326)

  • 1. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Baca V; Horak Z
    Med Eng Phys; 2007 Oct; 29(8):935. PubMed ID: 17097326
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Peng L; Bai J; Zeng X; Zhou Y
    Med Eng Phys; 2006 Apr; 28(3):227-33. PubMed ID: 16076560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of orthotropic bone elastic constants using FEA and modal analysis by Taylor WR et al. [J Biomech. (2002) Vol. 35, pp. 767-773].
    Wang SJ
    J Biomech; 2004 Mar; 37(3):421. PubMed ID: 14757464
    [No Abstract]   [Full Text] [Related]  

  • 6. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur.
    Yang H; Ma X; Guo T
    Med Eng Phys; 2010 Jul; 32(6):553-60. PubMed ID: 20435503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of orthotropic bone elastic constants using FEA and modal analysis.
    Taylor WR; Roland E; Ploeg H; Hertig D; Klabunde R; Warner MD; Hobatho MC; Rakotomanana L; Clift SE
    J Biomech; 2002 Jun; 35(6):767-73. PubMed ID: 12020996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur.
    Langton CM; Pisharody S; Keyak JH
    Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load.
    Judex S; Boyd S; Qin YX; Turner S; Ye K; Müller R; Rubin C
    Ann Biomed Eng; 2003 Jan; 31(1):12-20. PubMed ID: 12572652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.
    Geraldes DM; Modenese L; Phillips AT
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1029-42. PubMed ID: 26578078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.