These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17097326)

  • 21. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling.
    Zhang Y; Luo Y
    Biomed Mater Eng; 2020; 31(3):179-190. PubMed ID: 32597795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trabecular bone adaptation with an orthotropic material model.
    Miller Z; Fuchs MB; Arcan M
    J Biomech; 2002 Feb; 35(2):247-56. PubMed ID: 11784543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multilevel finite element modeling for the prediction of local cellular deformation in bone.
    Deligianni DD; Apostolopoulos CA
    Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical properties of femoral trabecular bone in dogs.
    Pressel T; Bouguecha A; Vogt U; Meyer-Lindenberg A; Behrens BA; Nolte I; Windhagen H
    Biomed Eng Online; 2005 Mar; 4():17. PubMed ID: 15774014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of Local Bone Loads for the Volume of Interest.
    Kim JJ; Kim Y; Jang IG
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in femoral strain following hip resurfacing and total hip replacement.
    Deuel CR; Jamali AA; Stover SM; Hazelwood SJ
    J Bone Joint Surg Br; 2009 Jan; 91(1):124-30. PubMed ID: 19092017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of mechanical properties of cortical bone by quantitative computed tomography.
    Duchemin L; Bousson V; Raossanaly C; Bergot C; Laredo JD; Skalli W; Mitton D
    Med Eng Phys; 2008 Apr; 30(3):321-8. PubMed ID: 17596993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and numerical validation of a finite element model of the muscle standardized femur.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):165-72. PubMed ID: 12807157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z; Trabelsi N; Milgrom C
    J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Bone adaptive digital analysis for femur bone being in disuse and overload condition].
    Chen X; Gong X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1074-8. PubMed ID: 19024449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of orthotropic and isotropic bone adaptation in the femur.
    Geraldes DM; Phillips AT
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):873-89. PubMed ID: 24753477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.
    Impelluso TJ
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):217-23. PubMed ID: 12888433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stress and strain distribution in the intact canine femur: finite element analysis.
    Shahar R; Banks-Sills L; Eliasy R
    Med Eng Phys; 2003 Jun; 25(5):387-95. PubMed ID: 12711236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probabilistic finite element analysis of a craniofacial finite element model.
    Berthaume MA; Dechow PC; Iriarte-Diaz J; Ross CF; Strait DS; Wang Q; Grosse IR
    J Theor Biol; 2012 May; 300():242-53. PubMed ID: 22306513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.