These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17097326)

  • 41. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae.
    Hofmann T; Heyroth F; Meinhard H; Fränzel W; Raum K
    J Biomech; 2006; 39(12):2282-94. PubMed ID: 16144702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validation of a finite element model of the human metacarpal.
    Barker DS; Netherway DJ; Krishnan J; Hearn TC
    Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading.
    Fujisaki K; Tadano S
    J Biomech; 2007; 40(8):1832-8. PubMed ID: 17078958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Finite element analysis of impact loads on the femur.
    Yu XZ; Guo YM; Li J; Zhang YQ; He RX
    Chin J Traumatol; 2007 Feb; 10(1):44-8. PubMed ID: 17229350
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anisotropy and strain rate effects on bovine cortical bone: combination of high-resolution imaging and dynamic loading.
    Mayeur O; Haugou G; Chaari F
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():206-8. PubMed ID: 23923911
    [No Abstract]   [Full Text] [Related]  

  • 54. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.
    Butz KD; Chan DD; Nauman EA; Neu CP
    J Biomech; 2011 Oct; 44(15):2667-72. PubMed ID: 21920526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus.
    Gefen A; Seliktar R
    Med Eng Phys; 2004 Mar; 26(2):119-29. PubMed ID: 15036179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of the spatial influence function on orthotropic femur remodelling.
    Shang Y; Bai J; Peng L
    Proc Inst Mech Eng H; 2008 Jul; 222(5):601-9. PubMed ID: 18756679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modified bone density-dependent orthotropic material model of human mandibular bone.
    Gačnik F; Ren Z; Hren NI
    Med Eng Phys; 2014 Dec; 36(12):1684-92. PubMed ID: 25456399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants.
    Yoon YJ; Yang G; Cowin SC
    Biomech Model Mechanobiol; 2002 Jun; 1(1):83-93. PubMed ID: 14586709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.