BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17098248)

  • 1. Fluorescent immunoprecipitation analysis of cell surface proteins: a methodology compatible with mass-spectrometry.
    Filatov AV; Krotov GI; Zgoda VG; Volkov Y
    J Immunol Methods; 2007 Jan; 319(1-2):21-33. PubMed ID: 17098248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of cell surface proteins in chronic and acute leukemia cell lines.
    Lee SJ; Kim KH; Park JS; Jung JW; Kim YH; Kim SK; Kim WS; Goh HG; Kim SH; Yoo JS; Kim DW; Kim KP
    Biochem Biophys Res Commun; 2007 Jun; 357(3):620-6. PubMed ID: 17449014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of affinity reagent interference for the mass spectrometric detection of low-abundance proteins following immunoprecipitation.
    Martin AM; Liu T; Lynn BC; Sinai AP
    J Proteome Res; 2007 Dec; 6(12):4758-62. PubMed ID: 17994686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotinylation and characterization of Cryptococcus neoformans cell surface proteins.
    Foster AJ; Bird RA; Smith SN
    J Appl Microbiol; 2007 Aug; 103(2):390-9. PubMed ID: 17650199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive liquid chromatography-electrospray mass spectrometry allows for the analysis of the O-glycosylation of immunoprecipitated proteins from cells or tissues: application to MUC1 glycosylation in cancer.
    Bäckström M; Thomsson KA; Karlsson H; Hansson GC
    J Proteome Res; 2009 Feb; 8(2):538-45. PubMed ID: 19072658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A targeted proteomic approach for the identification of tumor-associated membrane antigens using the ProteomeLab PF-2D in tandem with mass spectrometry.
    Chahal FC; Entwistle J; Glover N; Macdonald GC
    Biochem Biophys Res Commun; 2006 Sep; 348(3):1055-62. PubMed ID: 16908011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-D differential membrane proteome analysis of scarce protein samples.
    Helling S; Schmitt E; Joppich C; Schulenborg T; Müllner S; Felske-Müller S; Wiebringhaus T; Becker G; Linsenmann G; Sitek B; Lutter P; Meyer HE; Marcus K
    Proteomics; 2006 Aug; 6(16):4506-13. PubMed ID: 16835853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DIGE compatible labelling of surface proteins on vital cells in vitro and in vivo.
    Mayrhofer C; Krieger S; Allmaier G; Kerjaschki D
    Proteomics; 2006 Jan; 6(2):579-85. PubMed ID: 16372259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of target membrane proteins as detected by phage antibodies.
    Geuijen CA; Bakker AQ; de Kruif J
    Methods Mol Biol; 2009; 528():141-58. PubMed ID: 19153691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity biotinylation: nonradioactive method for specific selection and labeling of cellular proteins.
    Cosma A
    Anal Biochem; 1997 Oct; 252(1):10-4. PubMed ID: 9324934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term culture of surface-biotinylated cells: application in non-radioactive analysis of surface protein shedding.
    Hausmann S; Claus R; Walzel H
    Immunol Lett; 1995 Dec; 48(3):175-80. PubMed ID: 8867848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage affinity purification for inducibly phosphorylated membrane proteins.
    Peirce MJ; Begum S; Saklatvala J; Cope AP; Wait R
    Proteomics; 2005 Jun; 5(9):2417-21. PubMed ID: 15887181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico evaluation of two mass spectrometry-based approaches for the identification of novel human leukocyte cell-surface proteins.
    Nicholson IC; Ayhan M; Hoogenraad NJ; Zola H
    J Leukoc Biol; 2005 Feb; 77(2):190-8. PubMed ID: 15531629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic evaluation of cancer cells: identification of cell surface proteins.
    Larkin S; Aukim-Hastie C
    Methods Mol Biol; 2011; 731():395-405. PubMed ID: 21516424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes.
    Mitra SK; Walters BT; Clouse SD; Goshe MB
    J Proteome Res; 2009 Jun; 8(6):2752-67. PubMed ID: 19334764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
    Han P; Chen C
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1137-45. PubMed ID: 18335467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mycobacterium tuberculosis membrane protein Rv2560--biochemical and functional studies.
    Plaza DF; Curtidor H; Patarroyo MA; Chapeton-Montes JA; Reyes C; Barreto J; Patarroyo ME
    FEBS J; 2007 Dec; 274(24):6352-64. PubMed ID: 18005255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane protein identification: N-terminal labeling of nontryptic membrane protein peptides facilitates database searching.
    Jansson M; Wårell K; Levander F; James P
    J Proteome Res; 2008 Feb; 7(2):659-65. PubMed ID: 18161939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers.
    Lund R; Leth-Larsen R; Jensen ON; Ditzel HJ
    J Proteome Res; 2009 Jun; 8(6):3078-90. PubMed ID: 19341246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.