These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 17098315)
21. Synthetic matrix containing glucocorticoid and growth factor for chondrogenic differentiation of stem cells. Park KH; Park W; Na K J Biosci Bioeng; 2009 Aug; 108(2):168-73. PubMed ID: 19619866 [TBL] [Abstract][Full Text] [Related]
22. Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Mo XT; Guo SC; Xie HQ; Deng L; Zhi W; Xiang Z; Li XQ; Yang ZM Bone; 2009 Jul; 45(1):42-51. PubMed ID: 18708174 [TBL] [Abstract][Full Text] [Related]
23. Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Fan H; Zhang C; Li J; Bi L; Qin L; Wu H; Hu Y Biomacromolecules; 2008 Mar; 9(3):927-34. PubMed ID: 18269244 [TBL] [Abstract][Full Text] [Related]
24. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Toh WS; Lee EH; Guo XM; Chan JK; Yeow CH; Choo AB; Cao T Biomaterials; 2010 Sep; 31(27):6968-80. PubMed ID: 20619789 [TBL] [Abstract][Full Text] [Related]
25. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice]. Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021 [TBL] [Abstract][Full Text] [Related]
26. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139 [TBL] [Abstract][Full Text] [Related]
27. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Jin CZ; Park SR; Choi BH; Park K; Min BH Artif Organs; 2007 Mar; 31(3):183-92. PubMed ID: 17343693 [TBL] [Abstract][Full Text] [Related]
28. Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. Vinatier C; Magne D; Moreau A; Gauthier O; Malard O; Vignes-Colombeix C; Daculsi G; Weiss P; Guicheux J J Biomed Mater Res A; 2007 Jan; 80(1):66-74. PubMed ID: 16958048 [TBL] [Abstract][Full Text] [Related]
29. Osteogenic differentiation and ectopic bone formation of canine bone marrow-derived mesenchymal stem cells in injectable thermo-responsive polymer hydrogel. Liao HT; Chen CT; Chen JP Tissue Eng Part C Methods; 2011 Nov; 17(11):1139-49. PubMed ID: 21870942 [TBL] [Abstract][Full Text] [Related]
30. The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Yang HN; Park JS; Na K; Woo DG; Kwon YD; Park KH Biomaterials; 2009 Oct; 30(31):6374-85. PubMed ID: 19682739 [TBL] [Abstract][Full Text] [Related]
31. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the results of real-time polymerase chain reaction. Chou CH; Cheng WT; Kuo TF; Sun JS; Lin FH; Tsai JC J Biomed Mater Res A; 2007 Sep; 82(3):757-67. PubMed ID: 17326136 [TBL] [Abstract][Full Text] [Related]
32. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. Elisseeff J; McIntosh W; Fu K; Blunk BT; Langer R J Orthop Res; 2001 Nov; 19(6):1098-104. PubMed ID: 11781011 [TBL] [Abstract][Full Text] [Related]
33. Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes. Arikawa T; Matsukawa A; Watanabe K; Sakata KM; Seki M; Nagayama M; Takeshita K; Ito K; Niki T; Oomizu S; Shinonaga R; Saita N; Hirashima M Bone; 2009 May; 44(5):849-57. PubMed ID: 19442617 [TBL] [Abstract][Full Text] [Related]
34. Hyaluronan influence on the onset of chondrogenic differentiation of mesenchymal stem cells. Dvorakova J; Velebny V; Kubala L Neuro Endocrinol Lett; 2008 Oct; 29(5):685-90. PubMed ID: 18987597 [TBL] [Abstract][Full Text] [Related]
35. Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. Sheu SY; Chen WS; Sun JS; Lin FH; Wu T J Biomed Mater Res A; 2013 Dec; 101(12):3457-66. PubMed ID: 23595953 [TBL] [Abstract][Full Text] [Related]
36. The effect of hyaluronic acid with different molecular weights on collagen crosslink synthesis in cultured chondrocytes embedded in collagen gels. Abe M; Takahashi M; Nagano A J Biomed Mater Res A; 2005 Nov; 75(2):494-9. PubMed ID: 16092114 [TBL] [Abstract][Full Text] [Related]
37. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821 [TBL] [Abstract][Full Text] [Related]
38. In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Park JS; Yang HN; Woo DG; Chung HM; Park KH Tissue Eng Part A; 2009 Aug; 15(8):2163-75. PubMed ID: 19413492 [TBL] [Abstract][Full Text] [Related]
39. In situ cross-linkable hyaluronan hydrogel enhances chondrogenesis. Aulin C; Bergman K; Jensen-Waern M; Hedenqvist P; Hilborn J; Engstrand T J Tissue Eng Regen Med; 2011 Aug; 5(8):e188-96. PubMed ID: 21394931 [TBL] [Abstract][Full Text] [Related]