These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 17098458)
1. Consistent hydration of intervertebral discs during in vitro testing. Huber G; Morlock MM; Ito K Med Eng Phys; 2007 Sep; 29(7):808-13. PubMed ID: 17098458 [TBL] [Abstract][Full Text] [Related]
2. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489 [TBL] [Abstract][Full Text] [Related]
3. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Ryan G; Pandit A; Apatsidis D Clin Biomech (Bristol); 2008 Aug; 23(7):859-69. PubMed ID: 18423954 [TBL] [Abstract][Full Text] [Related]
4. The effect of hydration on the stiffness of intervertebral discs in an ovine model. Costi JJ; Hearn TC; Fazzalari NL Clin Biomech (Bristol); 2002 Jul; 17(6):446-55. PubMed ID: 12135546 [TBL] [Abstract][Full Text] [Related]
5. Mechanical differences between lumbar and tail discs in the mouse. Sarver JJ; Elliott DM J Orthop Res; 2005 Jan; 23(1):150-5. PubMed ID: 15607887 [TBL] [Abstract][Full Text] [Related]
6. Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate? van der Veen AJ; van Dieën JH; Nadort A; Stam B; Smit TH J Biomech; 2007; 40(10):2230-5. PubMed ID: 17182043 [TBL] [Abstract][Full Text] [Related]
7. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Kemper AR; McNally C; Duma SM Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077 [TBL] [Abstract][Full Text] [Related]
8. When are intervertebral discs stronger than their adjacent vertebrae? Skrzypiec D; Tarala M; Pollintine P; Dolan P; Adams MA Spine (Phila Pa 1976); 2007 Oct; 32(22):2455-61. PubMed ID: 18090085 [TBL] [Abstract][Full Text] [Related]
9. [Mechanical influences on the lumbar spine]. Fiser Z Cas Lek Cesk; 1992 Jan; 131(1):20-4. PubMed ID: 1559250 [TBL] [Abstract][Full Text] [Related]
10. [An experimental study on mechanical properties of fiber layers in anulus fibrosus of lumbar interverbral disc 4,5]. Zhu D; Dong X; Zhu X; Li R; Huang W; Wang C; Cui H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):290-4. PubMed ID: 16706350 [TBL] [Abstract][Full Text] [Related]
11. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Gantenbein B; Grünhagen T; Lee CR; van Donkelaar CC; Alini M; Ito K Spine (Phila Pa 1976); 2006 Nov; 31(23):2665-73. PubMed ID: 17077734 [TBL] [Abstract][Full Text] [Related]
12. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Beckstein JC; Sen S; Schaer TP; Vresilovic EJ; Elliott DM Spine (Phila Pa 1976); 2008 Mar; 33(6):E166-73. PubMed ID: 18344845 [TBL] [Abstract][Full Text] [Related]
13. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations. Groth KM; Granata KP J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854 [TBL] [Abstract][Full Text] [Related]
14. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Little JP; Adam CJ Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
16. A measurement technique to evaluate the macroscopic permeability of the vertebral end-plate. Accadbled F; Ambard D; de Gauzy JS; Swider P Med Eng Phys; 2008 Jan; 30(1):116-22. PubMed ID: 17446114 [TBL] [Abstract][Full Text] [Related]
17. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Wang JL; Wu TK; Lin TC; Cheng CH; Huang SC Spine (Phila Pa 1976); 2008 Aug; 33(17):1863-9. PubMed ID: 18670339 [TBL] [Abstract][Full Text] [Related]
18. The mechanical properties of rat spinal cord in vitro. Fiford RJ; Bilston LE J Biomech; 2005 Jul; 38(7):1509-15. PubMed ID: 15922762 [TBL] [Abstract][Full Text] [Related]
19. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study. Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931 [TBL] [Abstract][Full Text] [Related]
20. Viscoelastic stresses on anisotropic annulus fibrosus of lumbar disk under compression, rotation and flexion in manual treatment. Chaudhry H; Ji Z; Shenoy N; Findley T J Bodyw Mov Ther; 2009 Apr; 13(2):182-91. PubMed ID: 19329054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]