These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 17098476)

  • 1. Identification of functional modules in a PPI network by clique percolation clustering.
    Zhang S; Ning X; Zhang XS
    Comput Biol Chem; 2006 Dec; 30(6):445-51. PubMed ID: 17098476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of multiple data sources reveals modular structure of biological networks.
    Lu H; Shi B; Wu G; Zhang Y; Zhu X; Zhang Z; Liu C; Zhao Y; Wu T; Wang J; Chen R
    Biochem Biophys Res Commun; 2006 Jun; 345(1):302-9. PubMed ID: 16690033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of functional modules from protein interaction networks.
    Pereira-Leal JB; Enright AJ; Ouzounis CA
    Proteins; 2004 Jan; 54(1):49-57. PubMed ID: 14705023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular organization of protein interaction networks.
    Luo F; Yang Y; Chen CF; Chang R; Zhou J; Scheuermann RH
    Bioinformatics; 2007 Jan; 23(2):207-14. PubMed ID: 17092991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining functional and topological properties to identify core modules in protein interaction networks.
    Lubovac Z; Gamalielsson J; Olsson B
    Proteins; 2006 Sep; 64(4):948-59. PubMed ID: 16794996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and accurate method for identifying high-quality protein-interaction modules by clique merging and its application to yeast.
    Zhang C; Liu S; Zhou Y
    J Proteome Res; 2006 Apr; 5(4):801-7. PubMed ID: 16602686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J; Yuan B
    Bioinformatics; 2006 Sep; 22(18):2283-90. PubMed ID: 16837529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein complex prediction via cost-based clustering.
    King AD; Przulj N; Jurisica I
    Bioinformatics; 2004 Nov; 20(17):3013-20. PubMed ID: 15180928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional centrality: detecting lethality of proteins in protein interaction networks.
    Tew KL; Li XL; Tan SH
    Genome Inform; 2007; 19():166-77. PubMed ID: 18546514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional topology in a network of protein interactions.
    Przulj N; Wigle DA; Jurisica I
    Bioinformatics; 2004 Feb; 20(3):340-8. PubMed ID: 14960460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous decomposition of protein interaction networks: refining the description of intra-modular interactions.
    Del Mondo G; Eveillard D; Rusu I
    Bioinformatics; 2009 Apr; 25(7):926-32. PubMed ID: 19223451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness.
    Li D; Li J; Ouyang S; Wang J; Wu S; Wan P; Zhu Y; Xu X; He F
    Proteomics; 2006 Jan; 6(2):456-61. PubMed ID: 16317777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying protein complexes using hybrid properties.
    Chen L; Shi X; Kong X; Zeng Z; Cai YD
    J Proteome Res; 2009 Nov; 8(11):5212-8. PubMed ID: 19764809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks.
    Zhang S; Liu HW; Ning XM; Zhang XS
    Int J Data Min Bioinform; 2009; 3(1):68-84. PubMed ID: 19432377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining gene expression profiles and protein-protein interaction data to infer gene functions.
    Tu K; Yu H; Li YX
    J Biotechnol; 2006 Jul; 124(3):475-85. PubMed ID: 16530869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and prediction of protein-protein interactions within and between complexes.
    Sprinzak E; Altuvia Y; Margalit H
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14718-23. PubMed ID: 17003128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ModuleSearch: finding functional modules in a protein-protein interaction network.
    Cui G; Shrestha R; Han K
    Comput Methods Biomech Biomed Engin; 2012; 15(7):691-9. PubMed ID: 21827286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS; Xu K; Wilkins MR
    J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.