These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 17098488)
1. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Shapira-Schweitzer K; Seliktar D Acta Biomater; 2007 Jan; 3(1):33-41. PubMed ID: 17098488 [TBL] [Abstract][Full Text] [Related]
2. The role of matrix metalloproteinases in regulating neuronal and nonneuronal cell invasion into PEGylated fibrinogen hydrogels. Sarig-Nadir O; Seliktar D Biomaterials; 2010 Sep; 31(25):6411-6. PubMed ID: 20537384 [TBL] [Abstract][Full Text] [Related]
3. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Dikovsky D; Bianco-Peled H; Seliktar D Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393 [TBL] [Abstract][Full Text] [Related]
4. A novel poly(ethylene glycol)-fibrinogen hydrogel for tibial segmental defect repair in a rat model. Peled E; Boss J; Bejar J; Zinman C; Seliktar D J Biomed Mater Res A; 2007 Mar; 80(4):874-84. PubMed ID: 17072852 [TBL] [Abstract][Full Text] [Related]
5. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs. Kim PD; Peyton SR; VanStrien AJ; Putnam AJ Biomaterials; 2009 Aug; 30(23-24):3854-64. PubMed ID: 19443026 [TBL] [Abstract][Full Text] [Related]
6. The biocompatibility of PluronicF127 fibrinogen-based hydrogels. Shachaf Y; Gonen-Wadmany M; Seliktar D Biomaterials; 2010 Apr; 31(10):2836-47. PubMed ID: 20092890 [TBL] [Abstract][Full Text] [Related]
7. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Oss-Ronen L; Seliktar D Acta Biomater; 2011 Jan; 7(1):163-70. PubMed ID: 20643230 [TBL] [Abstract][Full Text] [Related]
8. A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. Shapira-Schweitzer K; Habib M; Gepstein L; Seliktar D J Mol Cell Cardiol; 2009 Feb; 46(2):213-24. PubMed ID: 19027751 [TBL] [Abstract][Full Text] [Related]
9. Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. Schmidt O; Mizrahi J; Elisseeff J; Seliktar D Biotechnol Bioeng; 2006 Dec; 95(6):1061-9. PubMed ID: 16921532 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial. Mironi-Harpaz I; Berdichevski A; Seliktar D Methods Mol Biol; 2014; 1181():61-8. PubMed ID: 25070327 [TBL] [Abstract][Full Text] [Related]
11. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Namba RM; Cole AA; Bjugstad KB; Mahoney MJ Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891 [TBL] [Abstract][Full Text] [Related]
12. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials. Gonen-Wadmany M; Goldshmid R; Seliktar D Biomaterials; 2011 Sep; 32(26):6025-33. PubMed ID: 21669457 [TBL] [Abstract][Full Text] [Related]
13. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. McManus MC; Boland ED; Simpson DG; Barnes CP; Bowlin GL J Biomed Mater Res A; 2007 May; 81(2):299-309. PubMed ID: 17120217 [TBL] [Abstract][Full Text] [Related]
14. The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D Biomaterials; 2009 Feb; 30(4):518-25. PubMed ID: 19000634 [TBL] [Abstract][Full Text] [Related]
15. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
16. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Gonen-Wadmany M; Oss-Ronen L; Seliktar D Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008 [TBL] [Abstract][Full Text] [Related]
17. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities. Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210 [TBL] [Abstract][Full Text] [Related]
18. Compositional alterations of fibrin-based materials for regulating in vitro neural outgrowth. Sarig-Nadir O; Seliktar D Tissue Eng Part A; 2008 Mar; 14(3):401-11. PubMed ID: 18333792 [TBL] [Abstract][Full Text] [Related]
19. Controlling the cellular organization of tissue-engineered cardiac constructs. Gonen-Wadmany M; Gepstein L; Seliktar D Ann N Y Acad Sci; 2004 May; 1015():299-311. PubMed ID: 15201169 [TBL] [Abstract][Full Text] [Related]
20. A novel, tissue occlusive poly(ethylene glycol) hydrogel material. Wechsler S; Fehr D; Molenberg A; Raeber G; Schense JC; Weber FE J Biomed Mater Res A; 2008 May; 85(2):285-92. PubMed ID: 17688293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]