These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 17098910)
1. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Bruhn JB; Gram L; Belas R Appl Environ Microbiol; 2007 Jan; 73(2):442-50. PubMed ID: 17098910 [TBL] [Abstract][Full Text] [Related]
2. Culture conditions of Roseobacter strain 27-4 affect its attachment and biofilm formation as quantified by real-time PCR. Bruhn JB; Haagensen JA; Bagge-Ravn D; Gram L Appl Environ Microbiol; 2006 Apr; 72(4):3011-5. PubMed ID: 16598009 [TBL] [Abstract][Full Text] [Related]
3. Dimethylsulfoniopropionate metabolism by Pfiesteria-associated Roseobacter spp. Miller TR; Belas R Appl Environ Microbiol; 2004 Jun; 70(6):3383-91. PubMed ID: 15184135 [TBL] [Abstract][Full Text] [Related]
4. Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Geng H; Bruhn JB; Nielsen KF; Gram L; Belas R Appl Environ Microbiol; 2008 Mar; 74(5):1535-45. PubMed ID: 18192410 [TBL] [Abstract][Full Text] [Related]
5. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Bruhn JB; Nielsen KF; Hjelm M; Hansen M; Bresciani J; Schulz S; Gram L Appl Environ Microbiol; 2005 Nov; 71(11):7263-70. PubMed ID: 16269767 [TBL] [Abstract][Full Text] [Related]
6. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395. Prol García MJ; D'Alvise PW; Rygaard AM; Gram L J Appl Microbiol; 2014 Dec; 117(6):1592-600. PubMed ID: 25284322 [TBL] [Abstract][Full Text] [Related]
7. Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish Turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Porsby CH; Nielsen KF; Gram L Appl Environ Microbiol; 2008 Dec; 74(23):7356-64. PubMed ID: 18952864 [TBL] [Abstract][Full Text] [Related]
8. Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Rao D; Webb JS; Kjelleberg S Appl Environ Microbiol; 2005 Apr; 71(4):1729-36. PubMed ID: 15811995 [TBL] [Abstract][Full Text] [Related]
9. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Miller TR; Hnilicka K; Dziedzic A; Desplats P; Belas R Appl Environ Microbiol; 2004 Aug; 70(8):4692-701. PubMed ID: 15294804 [TBL] [Abstract][Full Text] [Related]
10. Tight Regulation of Extracellular Superoxide Points to Its Vital Role in the Physiology of the Globally Relevant Hansel CM; Diaz JM; Plummer S mBio; 2019 Mar; 10(2):. PubMed ID: 30862752 [TBL] [Abstract][Full Text] [Related]
11. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms. Mitra S; Sana B; Mukherjee J Adv Biochem Eng Biotechnol; 2014; 146():163-205. PubMed ID: 24817086 [TBL] [Abstract][Full Text] [Related]
12. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. Sharifah EN; Eguchi M PLoS One; 2011; 6(10):e26756. PubMed ID: 22053210 [TBL] [Abstract][Full Text] [Related]
13. Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Frank O; Michael V; Päuker O; Boedeker C; Jogler C; Rohde M; Petersen J Syst Appl Microbiol; 2015 Mar; 38(2):120-7. PubMed ID: 25595869 [TBL] [Abstract][Full Text] [Related]
14. Microbial colonization and competition on the marine alga Ulva australis. Rao D; Webb JS; Kjelleberg S Appl Environ Microbiol; 2006 Aug; 72(8):5547-55. PubMed ID: 16885308 [TBL] [Abstract][Full Text] [Related]
15. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Cude WN; Mooney J; Tavanaei AA; Hadden MK; Frank AM; Gulvik CA; May AL; Buchan A Appl Environ Microbiol; 2012 Jul; 78(14):4771-80. PubMed ID: 22582055 [TBL] [Abstract][Full Text] [Related]
16. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Allgaier M; Uphoff H; Felske A; Wagner-Döbler I Appl Environ Microbiol; 2003 Sep; 69(9):5051-9. PubMed ID: 12957886 [TBL] [Abstract][Full Text] [Related]
17. Phaeobacter inhibens from the Roseobacter clade has an environmental niche as a surface colonizer in harbors. Gram L; Rasmussen BB; Wemheuer B; Bernbom N; Ng YY; Porsby CH; Breider S; Brinkhoff T Syst Appl Microbiol; 2015 Oct; 38(7):483-93. PubMed ID: 26343311 [TBL] [Abstract][Full Text] [Related]
18. Increased biofilm formation due to high-temperature adaptation in marine Roseobacter. Kent AG; Garcia CA; Martiny AC Nat Microbiol; 2018 Sep; 3(9):989-995. PubMed ID: 30061756 [TBL] [Abstract][Full Text] [Related]
19. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens. D'Alvise PW; Phippen CB; Nielsen KF; Gram L Appl Environ Microbiol; 2016 Jan; 82(2):502-9. PubMed ID: 26519388 [TBL] [Abstract][Full Text] [Related]
20. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Zech H; Thole S; Schreiber K; Kalhöfer D; Voget S; Brinkhoff T; Simon M; Schomburg D; Rabus R Proteomics; 2009 Jul; 9(14):3677-97. PubMed ID: 19639587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]