These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17099712)

  • 1. A chromatin-mediated mechanism for specification of conditional transcription factor targets.
    Buck MJ; Lieb JD
    Nat Genet; 2006 Dec; 38(12):1446-51. PubMed ID: 17099712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global nucleosome occupancy in yeast.
    Bernstein BE; Liu CL; Humphrey EL; Perlstein EO; Schreiber SL
    Genome Biol; 2004; 5(9):R62. PubMed ID: 15345046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae.
    Yarragudi A; Miyake T; Li R; Morse RH
    Mol Cell Biol; 2004 Oct; 24(20):9152-64. PubMed ID: 15456886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes.
    Rizzo JM; Mieczkowski PA; Buck MJ
    Nucleic Acids Res; 2011 Nov; 39(20):8803-19. PubMed ID: 21785133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae.
    Hanlon SE; Rizzo JM; Tatomer DC; Lieb JD; Buck MJ
    PLoS One; 2011 Apr; 6(4):e19060. PubMed ID: 21552514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene.
    Fleming AB; Pennings S
    Nucleic Acids Res; 2007; 35(16):5520-31. PubMed ID: 17704134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor.
    Mivelaz M; Cao AM; Kubik S; Zencir S; Hovius R; Boichenko I; Stachowicz AM; Kurat CF; Shore D; Fierz B
    Mol Cell; 2020 Feb; 77(3):488-500.e9. PubMed ID: 31761495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function.
    Lickwar CR; Mueller F; Hanlon SE; McNally JG; Lieb JD
    Nature; 2012 Apr; 484(7393):251-5. PubMed ID: 22498630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein.
    Mennella TA; Klinkenberg LG; Zitomer RS
    Eukaryot Cell; 2003 Dec; 2(6):1288-303. PubMed ID: 14665463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae.
    Zhang Z; Reese JC
    EMBO J; 2004 Jun; 23(11):2246-57. PubMed ID: 15116071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation.
    Fleming AB; Pennings S
    EMBO J; 2001 Sep; 20(18):5219-31. PubMed ID: 11566885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes.
    Feldmann EA; Galletto R
    Biochemistry; 2014 Dec; 53(48):7471-83. PubMed ID: 25382181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein.
    Wong KH; Struhl K
    Genes Dev; 2011 Dec; 25(23):2525-39. PubMed ID: 22156212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence.
    Platt JM; Ryvkin P; Wanat JJ; Donahue G; Ricketts MD; Barrett SP; Waters HJ; Song S; Chavez A; Abdallah KO; Master SR; Wang LS; Johnson FB
    Genes Dev; 2013 Jun; 27(12):1406-20. PubMed ID: 23756653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.
    Zhang Z; Reese JC
    Mol Cell Biol; 2005 Sep; 25(17):7399-411. PubMed ID: 16107689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome.
    Morohashi N; Yamamoto Y; Kuwana S; Morita W; Shindo H; Mitchell AP; Shimizu M
    Eukaryot Cell; 2006 Nov; 5(11):1925-33. PubMed ID: 16980406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site.
    Williams TL; Levy DL; Maki-Yonekura S; Yonekura K; Blackburn EH
    J Biol Chem; 2010 Nov; 285(46):35814-24. PubMed ID: 20826803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional repression by Tup1-Ssn6.
    Malavé TM; Dent SY
    Biochem Cell Biol; 2006 Aug; 84(4):437-43. PubMed ID: 16936817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.