These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. AID and RAG1 do not contribute to lymphomagenesis in Emu c-myc transgenic mice. Nepal RM; Zaheen A; Basit W; Li L; Berger SA; Martin A Oncogene; 2008 Aug; 27(34):4752-6. PubMed ID: 18408759 [TBL] [Abstract][Full Text] [Related]
5. MIF loss impairs Myc-induced lymphomagenesis. Talos F; Mena P; Fingerle-Rowson G; Moll U; Petrenko O Cell Death Differ; 2005 Oct; 12(10):1319-28. PubMed ID: 15947793 [TBL] [Abstract][Full Text] [Related]
7. A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Yu D; Thomas-Tikhonenko A Oncogene; 2002 Mar; 21(12):1922-7. PubMed ID: 11896625 [TBL] [Abstract][Full Text] [Related]
8. Transgenic N-myc mouse model for indolent B cell lymphoma: tumor characterization and analysis of genetic alterations in spontaneous and retrovirally accelerated tumors. Sheppard RD; Samant SA; Rosenberg M; Silver LM; Cole MD Oncogene; 1998 Oct; 17(16):2073-85. PubMed ID: 9798678 [TBL] [Abstract][Full Text] [Related]
9. Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice. Park SS; Kim JS; Tessarollo L; Owens JD; Peng L; Han SS; Tae Chung S; Torrey TA; Cheung WC; Polakiewicz RD; McNeil N; Ried T; Mushinski JF; Morse HC; Janz S Cancer Res; 2005 Feb; 65(4):1306-15. PubMed ID: 15735016 [TBL] [Abstract][Full Text] [Related]
10. Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV. Zörnig M; Grzeschiczek A; Kowalski MB; Hartmann KU; Möröy T Oncogene; 1995 Jun; 10(12):2397-401. PubMed ID: 7784089 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. van Veelen W; van Gasteren CJ; Acton DS; Franklin DS; Berger R; Lips CJ; Höppener JW Cancer Res; 2008 Mar; 68(5):1329-37. PubMed ID: 18316595 [TBL] [Abstract][Full Text] [Related]
12. The functional basis of c-myc and bcl-2 complementation during multistep lymphomagenesis in vivo. Marin MC; Hsu B; Stephens LC; Brisbay S; McDonnell TJ Exp Cell Res; 1995 Apr; 217(2):240-7. PubMed ID: 7698223 [TBL] [Abstract][Full Text] [Related]
13. Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Blyth K; Vaillant F; Hanlon L; Mackay N; Bell M; Jenkins A; Neil JC; Cameron ER Cancer Res; 2006 Feb; 66(4):2195-201. PubMed ID: 16489021 [TBL] [Abstract][Full Text] [Related]
14. A murine model for B-cell lymphomagenesis in immunocompromised hosts: c-myc-rearranged B-cell lines with a premalignant phenotype. Felsher DW; Denis KA; Weiss D; Ando DT; Braun J Cancer Res; 1990 Nov; 50(21):7042-9. PubMed ID: 2208171 [TBL] [Abstract][Full Text] [Related]
15. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development. Eischen CM; Alt JR; Wang P Oncogene; 2004 Nov; 23(55):8931-40. PubMed ID: 15467748 [TBL] [Abstract][Full Text] [Related]
16. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. Keller UB; Old JB; Dorsey FC; Nilsson JA; Nilsson L; MacLean KH; Chung L; Yang C; Spruck C; Boyd K; Reed SI; Cleveland JL EMBO J; 2007 May; 26(10):2562-74. PubMed ID: 17464290 [TBL] [Abstract][Full Text] [Related]