BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17099725)

  • 1. Ink4c is dispensable for tumor suppression in Myc-induced B-cell lymphomagenesis.
    Nilsson LM; Keller UB; Yang C; Nilsson JA; Cleveland JL; Roussel MF
    Oncogene; 2007 May; 26(20):2833-9. PubMed ID: 17099725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nfkb 1 is dispensable for Myc-induced lymphomagenesis.
    Keller U; Nilsson JA; Maclean KH; Old JB; Cleveland JL
    Oncogene; 2005 Sep; 24(41):6231-40. PubMed ID: 15940251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.
    Nilsson JA; Keller UB; Baudino TA; Yang C; Norton S; Old JA; Nilsson LM; Neale G; Kramer DL; Porter CW; Cleveland JL
    Cancer Cell; 2005 May; 7(5):433-44. PubMed ID: 15894264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AID and RAG1 do not contribute to lymphomagenesis in Emu c-myc transgenic mice.
    Nepal RM; Zaheen A; Basit W; Li L; Berger SA; Martin A
    Oncogene; 2008 Aug; 27(34):4752-6. PubMed ID: 18408759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MIF loss impairs Myc-induced lymphomagenesis.
    Talos F; Mena P; Fingerle-Rowson G; Moll U; Petrenko O
    Cell Death Differ; 2005 Oct; 12(10):1319-28. PubMed ID: 15947793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Id2 is dispensable for myc-induced lymphomagenesis.
    Nilsson JA; Nilsson LM; Keller U; Yokota Y; Boyd K; Cleveland JL
    Cancer Res; 2004 Oct; 64(20):7296-301. PubMed ID: 15492249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis.
    Yu D; Thomas-Tikhonenko A
    Oncogene; 2002 Mar; 21(12):1922-7. PubMed ID: 11896625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic N-myc mouse model for indolent B cell lymphoma: tumor characterization and analysis of genetic alterations in spontaneous and retrovirally accelerated tumors.
    Sheppard RD; Samant SA; Rosenberg M; Silver LM; Cole MD
    Oncogene; 1998 Oct; 17(16):2073-85. PubMed ID: 9798678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice.
    Park SS; Kim JS; Tessarollo L; Owens JD; Peng L; Han SS; Tae Chung S; Torrey TA; Cheung WC; Polakiewicz RD; McNeil N; Ried T; Mushinski JF; Morse HC; Janz S
    Cancer Res; 2005 Feb; 65(4):1306-15. PubMed ID: 15735016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV.
    Zörnig M; Grzeschiczek A; Kowalski MB; Hartmann KU; Möröy T
    Oncogene; 1995 Jun; 10(12):2397-401. PubMed ID: 7784089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development.
    van Veelen W; van Gasteren CJ; Acton DS; Franklin DS; Berger R; Lips CJ; Höppener JW
    Cancer Res; 2008 Mar; 68(5):1329-37. PubMed ID: 18316595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional basis of c-myc and bcl-2 complementation during multistep lymphomagenesis in vivo.
    Marin MC; Hsu B; Stephens LC; Brisbay S; McDonnell TJ
    Exp Cell Res; 1995 Apr; 217(2):240-7. PubMed ID: 7698223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo.
    Blyth K; Vaillant F; Hanlon L; Mackay N; Bell M; Jenkins A; Neil JC; Cameron ER
    Cancer Res; 2006 Feb; 66(4):2195-201. PubMed ID: 16489021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A murine model for B-cell lymphomagenesis in immunocompromised hosts: c-myc-rearranged B-cell lines with a premalignant phenotype.
    Felsher DW; Denis KA; Weiss D; Ando DT; Braun J
    Cancer Res; 1990 Nov; 50(21):7042-9. PubMed ID: 2208171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development.
    Eischen CM; Alt JR; Wang P
    Oncogene; 2004 Nov; 23(55):8931-40. PubMed ID: 15467748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis.
    Keller UB; Old JB; Dorsey FC; Nilsson JA; Nilsson L; MacLean KH; Chung L; Yang C; Spruck C; Boyd K; Reed SI; Cleveland JL
    EMBO J; 2007 May; 26(10):2562-74. PubMed ID: 17464290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis.
    Eischen CM; Weber JD; Roussel MF; Sherr CJ; Cleveland JL
    Genes Dev; 1999 Oct; 13(20):2658-69. PubMed ID: 10541552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues.
    Ramsey MR; Krishnamurthy J; Pei XH; Torrice C; Lin W; Carrasco DR; Ligon KL; Xiong Y; Sharpless NE
    Cancer Res; 2007 May; 67(10):4732-41. PubMed ID: 17510401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis.
    Ruggero D; Montanaro L; Ma L; Xu W; Londei P; Cordon-Cardo C; Pandolfi PP
    Nat Med; 2004 May; 10(5):484-6. PubMed ID: 15098029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoprevention of B-cell lymphomas by inhibition of the Myc target spermidine synthase.
    Forshell TP; Rimpi S; Nilsson JA
    Cancer Prev Res (Phila); 2010 Feb; 3(2):140-7. PubMed ID: 20103729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.