These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 17100452)
1. Effective molecular polarizabilities and crystal refractive indices estimated from x-ray diffraction data. Whitten AE; Jayatilaka D; Spackman MA J Chem Phys; 2006 Nov; 125(17):174505. PubMed ID: 17100452 [TBL] [Abstract][Full Text] [Related]
2. Refractive indices for molecular crystals from the response of X-ray constrained Hartree-Fock wavefunctions. Jayatilaka D; Munshi P; Turner MJ; Howard JA; Spackman MA Phys Chem Chem Phys; 2009 Sep; 11(33):7209-18. PubMed ID: 19672531 [TBL] [Abstract][Full Text] [Related]
3. Electron distribution and molecular motion in crystalline benzene: an accurate experimental study combining CCD X-ray data on C6H6 with multitemperature neutron-diffraction results on C6D6. Bürgi HB; Capelli SC; Goeta AE; Howard JA; Spackman MA; Yufit DS Chemistry; 2002 Aug; 8(15):3512-21. PubMed ID: 12203331 [TBL] [Abstract][Full Text] [Related]
4. The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree-Fock and density functional theory results obtained with the periodic coupled perturbed Hartree-Fock/Kohn-Sham scheme. Ferrero M; Civalleri B; Rérat M; Orlando R; Dovesi R J Chem Phys; 2009 Dec; 131(21):214704. PubMed ID: 19968357 [TBL] [Abstract][Full Text] [Related]
5. Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation. II. Local field effects and optical susceptibilitities. Reis H; Papadopoulos MG; Grzybowski A J Phys Chem B; 2006 Sep; 110(37):18537-52. PubMed ID: 16970482 [TBL] [Abstract][Full Text] [Related]
6. Modeling electron density distributions from X-ray diffraction to derive optical properties: constrained wavefunction versus multipole refinement. Hickstein DD; Cole JM; Turner MJ; Jayatilaka D J Chem Phys; 2013 Aug; 139(6):064108. PubMed ID: 23947844 [TBL] [Abstract][Full Text] [Related]
7. X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Jayatilaka D; Dittrich B Acta Crystallogr A; 2008 May; 64(Pt 3):383-93. PubMed ID: 18421128 [TBL] [Abstract][Full Text] [Related]
8. Reassessment of large dipole moment enhancements in crystals: a detailed experimental and theoretical charge density analysis of 2-methyl-4-nitroaniline. Whitten AE; Turner P; Klooster WT; Piltz RO; Spackman MA J Phys Chem A; 2006 Jul; 110(28):8763-76. PubMed ID: 16836439 [TBL] [Abstract][Full Text] [Related]
9. Third-order nonlinear optical properties and structures of (E)-N-(4-nitrobenzylidene)-2,6-dimethylaniline and (E)-N-(4-nitrobenzylidene)-2,3-dimethylaniline. Karakas A; Unver H Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1492-6. PubMed ID: 20194047 [TBL] [Abstract][Full Text] [Related]
10. Ab initio determination of the electric multipole moments and static (hyper)polarizability of HCCX, X = F, Cl, Br, and I. Maroulis G J Comput Chem; 2003 Mar; 24(4):443-52. PubMed ID: 12594787 [TBL] [Abstract][Full Text] [Related]
11. Size- and shape-dependent polarizabilities of sandwich and rice-ball Co(n)Bz(m) clusters from density functional theory. Wang J; Zhu L; Zhang X; Yang M J Phys Chem A; 2008 Sep; 112(36):8226-30. PubMed ID: 18700735 [TBL] [Abstract][Full Text] [Related]
12. Theoretical investigation on the linear and nonlinear susceptibilities of urea crystal. Olejniczak M; Pecul M; Champagne B; Botek E J Chem Phys; 2008 Jun; 128(24):244713. PubMed ID: 18601371 [TBL] [Abstract][Full Text] [Related]
13. Wave functions derived from experiment. V. Investigation of electron densities, electrostatic potentials, and electron localization functions for noncentrosymmetric crystals. Grimwood DJ; Bytheway I; Jayatilaka D J Comput Chem; 2003 Mar; 24(4):470-83. PubMed ID: 12594790 [TBL] [Abstract][Full Text] [Related]
14. The charge density of urea from synchrotron diffraction data. Birkedal H; Madsen D; Mathiesen RH; Knudsen K; Weber HP; Pattison P; Schwarzenbach D Acta Crystallogr A; 2004 Sep; 60(Pt 5):371-81. PubMed ID: 15477674 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions. Mannfors B; Palmo K; Krimm S J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387 [TBL] [Abstract][Full Text] [Related]
16. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities. Smalø HS; Astrand PO; Jensen L J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831 [TBL] [Abstract][Full Text] [Related]
17. Electric field-derived point charges to mimic the electrostatics in molecular crystals. Whitten AE; McKinnon JJ; Spackman MA J Comput Chem; 2006 Jul; 27(10):1063-70. PubMed ID: 16685714 [TBL] [Abstract][Full Text] [Related]
18. Electric dipole polarizabilities and C6 dipole-dipole dispersion coefficients for sodium clusters and C60. Jiemchooroj A; Norman P; Sernelius BE J Chem Phys; 2006 Sep; 125(12):124306. PubMed ID: 17014173 [TBL] [Abstract][Full Text] [Related]
19. Inclusion of the quadrupole moment when describing polarization. The effect of the dipole-quadrupole polarizability. Holt A; Karlström G J Comput Chem; 2008 Sep; 29(12):2033-8. PubMed ID: 18432620 [TBL] [Abstract][Full Text] [Related]
20. A charge-dipole model for the static polarizability of nanostructures including aliphatic, olephinic, and aromatic systems. Mayer A; Astrand PO J Phys Chem A; 2008 Feb; 112(6):1277-85. PubMed ID: 18198848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]