These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 17100460)

  • 21. Investigation of Rotational Diffusion of a Carbon Nanotube by Molecular Dynamics.
    Dong RY; Cao BY
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2984-8. PubMed ID: 26353524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular simulation of pressure-driven fluid flow in nanoporous membranes.
    Takaba H; Onumata Y; Nakao S
    J Chem Phys; 2007 Aug; 127(5):054703. PubMed ID: 17688353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport diffusion of gases is rapid in flexible carbon nanotubes.
    Chen H; Johnson JK; Sholl DS
    J Phys Chem B; 2006 Feb; 110(5):1971-5. PubMed ID: 16471771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures.
    Bergin SD; Sun Z; Rickard D; Streich PV; Hamilton JP; Coleman JN
    ACS Nano; 2009 Aug; 3(8):2340-50. PubMed ID: 19655724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong correlations and Fickian water diffusion in narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Chem Phys; 2007 Mar; 126(12):124704. PubMed ID: 17411149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids.
    Longhurst MJ; Quirke N
    J Chem Phys; 2006 Nov; 125(18):184705. PubMed ID: 17115777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of gases in carbon nanotubes: are defect interstitial sites important?
    Labrosse MR; Shi W; Johnson JK
    Langmuir; 2008 Sep; 24(17):9430-9. PubMed ID: 18683959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of the carbon nanotube on the structural and dynamical properties of cholesterol cluster.
    Raczyński P; Dawid A; Sokół M; Gburski Z
    Biomol Eng; 2007 Nov; 24(5):572-6. PubMed ID: 17977066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slip velocity and velocity inversion in a cylindrical Couette flow.
    Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036312. PubMed ID: 19392054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamic properties of carbon nanotubes.
    Walther JH; Werder T; Jaffe RL; Koumoutsakos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the interfacial binding between single-walled carbon nanotubes and heterocyclic conjugated polymers.
    Foroutan M; Nasrabadi AT
    J Phys Chem B; 2010 Apr; 114(16):5320-6. PubMed ID: 20369812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computational study of leukocyte adhesion and its effect on flow pattern in microvessels.
    Pappu V; Doddi SK; Bagchi P
    J Theor Biol; 2008 Sep; 254(2):483-98. PubMed ID: 18597788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation.
    Bahrami AH; Jalali MA
    J Chem Phys; 2010 Jan; 132(2):024702. PubMed ID: 20095689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes.
    Wilson M
    J Chem Phys; 2006 Mar; 124(12):124706. PubMed ID: 16599717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nature of water transport and electro-osmosis in nafion: insights from first-principles molecular dynamics simulations under an electric field.
    Choe YK; Tsuchida E; Ikeshoji T; Yamakawa S; Hyodo SA
    J Phys Chem B; 2008 Sep; 112(37):11586-94. PubMed ID: 18717541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrokinetics at aqueous interfaces without mobile charges.
    Bonthuis DJ; Horinek D; Bocquet L; Netz RR
    Langmuir; 2010 Aug; 26(15):12614-25. PubMed ID: 20099858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis.
    Mendes MJ; Schmidt HK; Pasquali M
    J Phys Chem B; 2008 Jun; 112(25):7467-77. PubMed ID: 18512886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics investigation into the structural features and transport properties of C60 in liquid argon.
    Fang KC; Weng CI
    J Phys Chem A; 2007 Jul; 111(26):5845-50. PubMed ID: 17559197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.