BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17100585)

  • 41. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway.
    Brewster JL; Gustin MC
    Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast.
    Kociemba J; Jørgensen ACS; Tadić N; Harris A; Sideri T; Chan WY; Ibrahim F; Ünal E; Skehel M; Shahrezaei V; Argüello-Miranda O; van Werven FJ
    EMBO J; 2024 Jun; ():. PubMed ID: 38886580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developmentally regulated internal transcription initiation during meiosis in budding yeast.
    Zhou S; Sternglanz R; Neiman AM
    PLoS One; 2017; 12(11):e0188001. PubMed ID: 29136644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AIP regulates stability of Aurora-A at early mitotic phase coordinately with GSK-3beta.
    Fumoto K; Lee PC; Saya H; Kikuchi A
    Oncogene; 2008 Jul; 27(32):4478-87. PubMed ID: 18391981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells.
    Sun A; Li C; Chen R; Huang Y; Chen Q; Cui X; Liu H; Thrasher JB; Li B
    Prostate; 2016 Feb; 76(2):172-83. PubMed ID: 26440826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yeast GSK-3 kinase regulates astral microtubule function through phosphorylation of the microtubule-stabilizing kinesin Kip2.
    Drechsler H; Tan AN; Liakopoulos D
    J Cell Sci; 2015 Nov; 128(21):3910-21. PubMed ID: 26395399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans.
    Nishi Y; Lin R
    Dev Biol; 2005 Dec; 288(1):139-49. PubMed ID: 16289132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle.
    Cid VJ; Shulewitz MJ; McDonald KL; Thorner J
    Mol Biol Cell; 2001 Jun; 12(6):1645-69. PubMed ID: 11408575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gis4, a new component of the ion homeostasis system in the yeast Saccharomyces cerevisiae.
    Ye T; García-Salcedo R; Ramos J; Hohmann S
    Eukaryot Cell; 2006 Oct; 5(10):1611-21. PubMed ID: 17030993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initiation of meiosis and sporulation in Saccharomyces cerevisiae requires a novel protein kinase homologue.
    Yoshida M; Kawaguchi H; Sakata Y; Kominami K; Hirano M; Shima H; Akada R; Yamashita I
    Mol Gen Genet; 1990 Apr; 221(2):176-86. PubMed ID: 2196430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glycogen synthase kinase-3--an overview of an over-achieving protein kinase.
    Kockeritz L; Doble B; Patel S; Woodgett JR
    Curr Drug Targets; 2006 Nov; 7(11):1377-88. PubMed ID: 17100578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1.
    Leberer E; Dignard D; Harcus D; Hougan L; Whiteway M; Thomas DY
    Mol Gen Genet; 1993 Nov; 241(3-4):241-54. PubMed ID: 8246877
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.
    Leberer E; Harcus D; Broadbent ID; Clark KL; Dignard D; Ziegelbauer K; Schmidt A; Gow NA; Brown AJ; Thomas DY
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13217-22. PubMed ID: 8917571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and sequence of human PKY, a putative kinase with increased expression in multidrug-resistant cells, with homology to yeast protein kinase Yak1.
    Begley DA; Berkenpas MB; Sampson KE; Abraham I
    Gene; 1997 Oct; 200(1-2):35-43. PubMed ID: 9373137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Apolipoprotein E and beta-amyloid (1-42) regulation of glycogen synthase kinase-3beta.
    Cedazo-Mínguez A; Popescu BO; Blanco-Millán JM; Akterin S; Pei JJ; Winblad B; Cowburn RF
    J Neurochem; 2003 Dec; 87(5):1152-64. PubMed ID: 14622095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prk1p.
    Zeng G; Cai M
    Int J Biochem Cell Biol; 2005 Jan; 37(1):48-53. PubMed ID: 15381149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification and characterization of the DNA binding domain of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80.
    Sopko R; Stuart DT
    Protein Expr Purif; 2004 Jan; 33(1):134-44. PubMed ID: 14680970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Yeast Rim11 kinase responds to glutathione-induced stress by regulating the transcription of phospholipid biosynthetic genes.
    Yasukawa T; Iwama R; Yamasaki Y; Masuo N; Noda Y
    Mol Biol Cell; 2024 Jan; 35(1):ar8. PubMed ID: 37938929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae.
    Roberts RL; Mösch HU; Fink GR
    Cell; 1997 Jun; 89(7):1055-65. PubMed ID: 9215628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-specificity protein kinases: will any hydroxyl do?
    Lindberg RA; Quinn AM; Hunter T
    Trends Biochem Sci; 1992 Mar; 17(3):114-9. PubMed ID: 1412695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.