These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17100633)

  • 21. Intuitive ordering of scaffolds and scaffold similarity searching using scaffold keys.
    Ertl P
    J Chem Inf Model; 2014 Jun; 54(6):1617-22. PubMed ID: 24846291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation.
    Krueger BA; Dietrich A; Baringhaus KH; Schneider G
    Comb Chem High Throughput Screen; 2009 May; 12(4):383-96. PubMed ID: 19442066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic assessment of scaffold distances in ChEMBL: prioritization of compound data sets for scaffold hopping analysis in virtual screening.
    Li R; Bajorath J
    J Comput Aided Mol Des; 2012 Oct; 26(10):1101-9. PubMed ID: 22972561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand-based drug design.
    Magalhães J; Franko N; Annunziato G; Welch M; Dolan SK; Bruno A; Mozzarelli A; Armao S; Jirgensons A; Pieroni M; Costantino G; Campanini B
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):1444-1452. PubMed ID: 30221554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fingerprint directed scaffold hopping for identification of CCR2 antagonists.
    Nair PC; Sobhia ME
    J Chem Inf Model; 2008 Sep; 48(9):1891-902. PubMed ID: 18763838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular medicinal insights into scaffold hopping-based drug discovery success.
    Acharya A; Yadav M; Nagpure M; Kumaresan S; Guchhait SK
    Drug Discov Today; 2024 Jan; 29(1):103845. PubMed ID: 38013043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An overview of molecular fingerprint similarity search in virtual screening.
    Muegge I; Mukherjee P
    Expert Opin Drug Discov; 2016; 11(2):137-48. PubMed ID: 26558489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The azulene scaffold from a medicinal chemist's perspective: Physicochemical and in vitro parameters relevant for drug discovery.
    Leino TO; Sieger P; Yli-Kauhaluoma J; Wallén EAA; Kley JT
    Eur J Med Chem; 2022 Jul; 237():114374. PubMed ID: 35436668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a Structurally Novel Multipotent Drug Candidate by the Scaffold Architecture Technique for ACE-II, NSP15, and M
    Pakrashy S; Mandal PK; Dey SK; Choudhury SM; Alasmary FA; Almalki AS; Islam MA; Dolai M
    ACS Omega; 2022 Sep; 7(37):33408-33422. PubMed ID: 36157758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The scaffold tree: an efficient navigation in the scaffold universe.
    Ertl P; Schuffenhauer A; Renner S
    Methods Mol Biol; 2011; 672():245-60. PubMed ID: 20838972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scaffold hopping in de novo design. Ligand generation in the absence of receptor information.
    Lloyd DG; Buenemann CL; Todorov NP; Manallack DT; Dean PM
    J Med Chem; 2004 Jan; 47(3):493-6. PubMed ID: 14736231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Bioactive Scaffolds Based on QSAR Models.
    Nakagawa T; Miyao T; Funatsu K
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29135084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing Scaffold Diversity of Kinase Inhibitors Using Alternative Scaffold Concepts and Estimating the Scaffold Hopping Potential for Different Kinases.
    Dimova D; Bajorath J
    Molecules; 2017 May; 22(5):. PubMed ID: 28467353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Second-generation activity cliffs identified on the basis of target set-dependent potency difference criteria.
    Hu H; Stumpfe D; Bajorath J
    Future Med Chem; 2019 Mar; 11(5):379-394. PubMed ID: 30887828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo design - hop(p)ing against hope.
    Schneider G
    Drug Discov Today Technol; 2013 Dec; 10(4):e453-60. PubMed ID: 24451634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the Growth of Bioactive Compounds and Scaffolds over Time: Implications for Lead Discovery and Scaffold Hopping.
    Jasial S; Hu Y; Bajorath J
    J Chem Inf Model; 2016 Feb; 56(2):300-7. PubMed ID: 26838127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep scaffold hopping with multimodal transformer neural networks.
    Zheng S; Lei Z; Ai H; Chen H; Deng D; Yang Y
    J Cheminform; 2021 Nov; 13(1):87. PubMed ID: 34774103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces.
    Boehm M; Wu TY; Claussen H; Lemmen C
    J Med Chem; 2008 Apr; 51(8):2468-80. PubMed ID: 18380426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward an efficient approach to identify molecular scaffolds possessing selective or promiscuous compounds.
    Yongye AB; Medina-Franco JL
    Chem Biol Drug Des; 2013 Oct; 82(4):367-75. PubMed ID: 23659738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of scaffold-hopping approaches.
    Sun H; Tawa G; Wallqvist A
    Drug Discov Today; 2012 Apr; 17(7-8):310-24. PubMed ID: 22056715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.