BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 17101131)

  • 1. Effect of temperature on protein quality in bacterial inclusion bodies.
    de Groot NS; Ventura S
    FEBS Lett; 2006 Nov; 580(27):6471-6. PubMed ID: 17101131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates.
    de Groot NS; Ventura S
    J Biotechnol; 2006 Aug; 125(1):110-3. PubMed ID: 16621081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and thermodynamic stability of bacterial intracellular aggregates.
    Espargaró A; Sabaté R; Ventura S
    FEBS Lett; 2008 Oct; 582(25-26):3669-73. PubMed ID: 18840434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent genetic control of protein solubility and conformational quality in Escherichia coli.
    García-Fruitós E; Martínez-Alonso M; Gonzàlez-Montalbán N; Valli M; Mattanovich D; Villaverde A
    J Mol Biol; 2007 Nov; 374(1):195-205. PubMed ID: 17920630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL.
    González-Montalbán N; Carrió MM; Cuatrecasas S; Arís A; Villaverde A
    J Biotechnol; 2005 Sep; 118(4):406-12. PubMed ID: 16024126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Abeta42 into a folded soluble native-like protein using a semi-random library of amphipathic helices.
    Arslan PE; Mulligan VK; Ho S; Chakrabartty A
    J Mol Biol; 2010 Mar; 396(5):1284-94. PubMed ID: 20026077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid protein-folding assay using green fluorescent protein.
    Waldo GS; Standish BM; Berendzen J; Terwilliger TC
    Nat Biotechnol; 1999 Jul; 17(7):691-5. PubMed ID: 10404163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark proteins: effect of inclusion body formation on quantification of protein expression.
    Iafolla MA; Mazumder M; Sardana V; Velauthapillai T; Pannu K; McMillen DR
    Proteins; 2008 Sep; 72(4):1233-42. PubMed ID: 18350571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of active inclusion bodies in the periplasm of Escherichia coli.
    Arié JP; Miot M; Sassoon N; Betton JM
    Mol Microbiol; 2006 Oct; 62(2):427-37. PubMed ID: 17020581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid-like properties of bacterial inclusion bodies.
    Carrió M; González-Montalbán N; Vera A; Villaverde A; Ventura S
    J Mol Biol; 2005 Apr; 347(5):1025-37. PubMed ID: 15784261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baculoviral polyhedrin as a novel fusion partner for formation of inclusion body in Escherichia coli.
    Seo JH; Li L; Yeo JS; Cha HJ
    Biotechnol Bioeng; 2003 Nov; 84(4):467-73. PubMed ID: 14574705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies.
    Bajorunaite E; Cirkovas A; Radzevicius K; Larsen KL; Sereikaite J; Bumelis VA
    Int J Biol Macromol; 2009 Jun; 44(5):428-34. PubMed ID: 19428477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel gene cloning and protein production in multiple expression systems.
    Wang HM; Shih YP; Hu SM; Lo WT; Lin HM; Ding SS; Liao HC; Liang PH
    Biotechnol Prog; 2009; 25(6):1582-6. PubMed ID: 19637396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of recombinant antimicrobial peptides in bacteria.
    Zorko M; Jerala R
    Methods Mol Biol; 2010; 618():61-76. PubMed ID: 20094858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures.
    Vera A; González-Montalbán N; Arís A; Villaverde A
    Biotechnol Bioeng; 2007 Apr; 96(6):1101-6. PubMed ID: 17013944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic optimization of active protein expression using GFP as a folding reporter.
    Omoya K; Kato Z; Matsukuma E; Li A; Hashimoto K; Yamamoto Y; Ohnishi H; Kondo N
    Protein Expr Purif; 2004 Aug; 36(2):327-32. PubMed ID: 15249057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of inclusion body-forming peptides and proteins in soluble form by fusion to Escherichia coli thermostable proteins.
    Thapa A; Shahnawaz M; Karki P; Raj Dahal G; Sharoar MG; Yub Shin S; Sup Lee J; Cho B; Park IS
    Biotechniques; 2008 May; 44(6):787-96. PubMed ID: 18476832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ proteolytic digestion of inclusion body polypeptides occurs as a cascade process.
    Cubarsí R; Carrió MM; Villaverde A
    Biochem Biophys Res Commun; 2001 Mar; 282(2):436-41. PubMed ID: 11401478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, refolding, and characterization of a novel recombinant dual human stem cell factor.
    Lu H; Zang Y; Ze Y; Zhu J; Chen T; Han J; Qin J
    Protein Expr Purif; 2005 Oct; 43(2):126-32. PubMed ID: 16139754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.