BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17101662)

  • 1. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice.
    Waterman SR; Hacham M; Panepinto J; Hu G; Shin S; Williamson PR
    Infect Immun; 2007 Feb; 75(2):714-22. PubMed ID: 17101662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase expression in murine pulmonary Cryptococcus neoformans infection.
    Garcia-Rivera J; Tucker SC; Feldmesser M; Williamson PR; Casadevall A
    Infect Immun; 2005 May; 73(5):3124-7. PubMed ID: 15845520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice.
    Qiu Y; Davis MJ; Dayrit JK; Hadd Z; Meister DL; Osterholzer JJ; Williamson PR; Olszewski MA
    PLoS One; 2012; 7(10):e47853. PubMed ID: 23110112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the ESCRT Pathway in Laccase Trafficking and Virulence of Cryptococcus neoformans.
    Park YD; Chen SH; Camacho E; Casadevall A; Williamson PR
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32284371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of laccase in the biology and virulence of Cryptococcus neoformans.
    Zhu X; Williamson PR
    FEMS Yeast Res; 2004 Oct; 5(1):1-10. PubMed ID: 15381117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization.
    Eastman AJ; He X; Qiu Y; Davis MJ; Vedula P; Lyons DM; Park YD; Hardison SE; Malachowski AN; Osterholzer JJ; Wormley FL; Williamson PR; Olszewski MA
    J Immunol; 2015 Jun; 194(12):5999-6010. PubMed ID: 25972480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence.
    Noverr MC; Williamson PR; Fajardo RS; Huffnagle GB
    Infect Immun; 2004 Mar; 72(3):1693-9. PubMed ID: 14977977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection.
    Hansakon A; Ngamskulrungroj P; Angkasekwinai P
    Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31871099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor.
    Zhu X; Gibbons J; Garcia-Rivera J; Casadevall A; Williamson PR
    Infect Immun; 2001 Sep; 69(9):5589-96. PubMed ID: 11500433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase Affects the Rate of Cryptococcus neoformans Nonlytic Exocytosis from Macrophages.
    Frazão SO; Sousa HR; Silva LGD; Folha JDS; Gorgonha KCM; Oliveira GP; Felipe MSS; Silva-Pereira I; Casadevall A; Nicola AM; Albuquerque P
    mBio; 2020 Sep; 11(5):. PubMed ID: 32900810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans.
    Panepinto J; Komperda K; Frases S; Park YD; Djordjevic JT; Casadevall A; Williamson PR
    Mol Microbiol; 2009 Mar; 71(5):1165-76. PubMed ID: 19210702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis.
    Upadhya R; Baker LG; Lam WC; Specht CA; Donlin MJ; Lodge JK
    mBio; 2018 Nov; 9(6):. PubMed ID: 30459196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection.
    Huang SH; Wu CH; Chang YC; Kwon-Chung KJ; Brown RJ; Jong A
    PLoS One; 2012; 7(11):e48570. PubMed ID: 23144903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans.
    Panepinto J; Liu L; Ramos J; Zhu X; Valyi-Nagy T; Eksi S; Fu J; Jaffe HA; Wickes B; Williamson PR
    J Clin Invest; 2005 Mar; 115(3):632-41. PubMed ID: 15765146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1.
    Missall TA; Moran JM; Corbett JA; Lodge JK
    Eukaryot Cell; 2005 Jan; 4(1):202-8. PubMed ID: 15643075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system.
    Shea JM; Kechichian TB; Luberto C; Del Poeta M
    Infect Immun; 2006 Oct; 74(10):5977-88. PubMed ID: 16988277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans.
    Jung WH; Sham A; White R; Kronstad JW
    PLoS Biol; 2006 Nov; 4(12):e410. PubMed ID: 17121456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laccase and melanin in the pathogenesis of Cryptococcus neoformans.
    Williamson PR
    Front Biosci; 1997 Nov; 2():e99-107. PubMed ID: 9342305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans.
    Zhu X; Williamson PR
    Mol Microbiol; 2003 Nov; 50(4):1271-81. PubMed ID: 14622414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans.
    Rittershaus PC; Kechichian TB; Allegood JC; Merrill AH; Hennig M; Luberto C; Del Poeta M
    J Clin Invest; 2006 Jun; 116(6):1651-9. PubMed ID: 16741577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.