BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17101795)

  • 1. Myocardin sumoylation transactivates cardiogenic genes in pluripotent 10T1/2 fibroblasts.
    Wang J; Li A; Wang Z; Feng X; Olson EN; Schwartz RJ
    Mol Cell Biol; 2007 Jan; 27(2):622-32. PubMed ID: 17101795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMO-1 modification activated GATA4-dependent cardiogenic gene activity.
    Wang J; Feng XH; Schwartz RJ
    J Biol Chem; 2004 Nov; 279(47):49091-8. PubMed ID: 15337742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms.
    Liao XH; Wang N; Zhao DW; Zheng DL; Zheng L; Xing WJ; Zhou H; Cao DS; Zhang TC
    Cell Signal; 2014 Dec; 26(12):2738-48. PubMed ID: 25152367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forced expression of myocardin is not sufficient for induction of smooth muscle differentiation in multipotential embryonic cells.
    Yoshida T; Kawai-Kowase K; Owens GK
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1596-601. PubMed ID: 15231515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cardiac myocyte cell death and differentiation by myocardin.
    Gordon JW
    Mol Cell Biochem; 2018 Jan; 437(1-2):119-131. PubMed ID: 28631251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity.
    Sentis S; Le Romancer M; Bianchin C; Rostan MC; Corbo L
    Mol Endocrinol; 2005 Nov; 19(11):2671-84. PubMed ID: 15961505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of myocardin function by the ubiquitin E3 ligase UBR5.
    Hu G; Wang X; Saunders DN; Henderson M; Russell AJ; Herring BP; Zhou J
    J Biol Chem; 2010 Apr; 285(16):11800-9. PubMed ID: 20167605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation.
    Rogers RS; Horvath CM; Matunis MJ
    J Biol Chem; 2003 Aug; 278(32):30091-7. PubMed ID: 12764129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin.
    van Tuyn J; Knaän-Shanzer S; van de Watering MJ; de Graaf M; van der Laarse A; Schalij MJ; van der Wall EE; de Vries AA; Atsma DE
    Cardiovasc Res; 2005 Aug; 67(2):245-55. PubMed ID: 15907818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMOylation of RORalpha potentiates transcriptional activation function.
    Hwang EJ; Lee JM; Jeong J; Park JH; Yang Y; Lim JS; Kim JH; Baek SH; Kim KI
    Biochem Biophys Res Commun; 2009 Jan; 378(3):513-7. PubMed ID: 19041634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box.
    Doi H; Iso T; Yamazaki M; Akiyama H; Kanai H; Sato H; Kawai-Kowase K; Tanaka T; Maeno T; Okamoto E; Arai M; Kedes L; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2328-34. PubMed ID: 16151017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PIAS1 is a GATA4 SUMO ligase that regulates GATA4-dependent intestinal promoters independent of SUMO ligase activity and GATA4 sumoylation.
    Belaguli NS; Zhang M; Garcia AH; Berger DH
    PLoS One; 2012; 7(4):e35717. PubMed ID: 22539995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression.
    Pipes GC; Sinha S; Qi X; Zhu CH; Gallardo TD; Shelton J; Creemers EE; Sutherland L; Richardson JA; Garry DJ; Wright WE; Owens GK; Olson EN
    Dev Biol; 2005 Dec; 288(2):502-13. PubMed ID: 16310178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cGMP-dependent protein kinase and the regulation of vascular smooth muscle cell gene expression: possible involvement of Elk-1 sumoylation.
    Choi C; Sellak H; Brown FM; Lincoln TM
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1660-70. PubMed ID: 20802137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of smooth muscle development by the myocardin family of transcriptional coactivators.
    Wang DZ; Olson EN
    Curr Opin Genet Dev; 2004 Oct; 14(5):558-66. PubMed ID: 15380248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIAS proteins promote SUMO-1 conjugation to STAT1.
    Ungureanu D; Vanhatupa S; Kotaja N; Yang J; Aittomaki S; Jänne OA; Palvimo JJ; Silvennoinen O
    Blood; 2003 Nov; 102(9):3311-3. PubMed ID: 12855578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of miR-145 in cardiac myofibroblast differentiation.
    Wang YS; Li SH; Guo J; Mihic A; Wu J; Sun L; Davis K; Weisel RD; Li RK
    J Mol Cell Cardiol; 2014 Jan; 66():94-105. PubMed ID: 24001939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SENP2 Promotes VSMC Phenotypic Switching via Myocardin De-SUMOylation.
    Liang M; Cai Z; Jiang Y; Huo H; Shen L; He B
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMO-1 modification of MEF2A regulates its transcriptional activity.
    Riquelme C; Barthel KK; Liu X
    J Cell Mol Med; 2006; 10(1):132-44. PubMed ID: 16563226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of Tbx5-mediated transactivation by SUMO conjugation and protein inhibitor of activated STAT 1 (PIAS1).
    Beketaev I; Kim EY; Zhang Y; Yu W; Qian L; Wang J
    Int J Biochem Cell Biol; 2014 May; 50():82-92. PubMed ID: 24582888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.