These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 17103049)
1. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049 [TBL] [Abstract][Full Text] [Related]
2. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372 [TBL] [Abstract][Full Text] [Related]
3. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Kim MS; Yeon JH; Park JK Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048 [TBL] [Abstract][Full Text] [Related]
6. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Saadi W; Wang SJ; Lin F; Jeon NL Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570 [TBL] [Abstract][Full Text] [Related]
7. Immuno-capture of Cryptosporidium parvum using micro-well array. Taguchi T; Takeyama H; Matsunaga T Biosens Bioelectron; 2005 May; 20(11):2276-82. PubMed ID: 15797326 [TBL] [Abstract][Full Text] [Related]
13. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Arai F; Ng C; Maruyama H; Ichikawa A; El-Shimy H; Fukuda T Lab Chip; 2005 Dec; 5(12):1399-403. PubMed ID: 16286972 [TBL] [Abstract][Full Text] [Related]
14. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Yamada M; Kasim V; Nakashima M; Edahiro J; Seki M Biotechnol Bioeng; 2004 Nov; 88(4):489-94. PubMed ID: 15459911 [TBL] [Abstract][Full Text] [Related]
15. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Huang CW; Cheng JY; Yen MH; Young TH Biosens Bioelectron; 2009 Aug; 24(12):3510-6. PubMed ID: 19497728 [TBL] [Abstract][Full Text] [Related]
16. Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device. Fernandes R; Luo X; Tsao CY; Payne GF; Ghodssi R; Rubloff GW; Bentley WE Lab Chip; 2010 May; 10(9):1128-34. PubMed ID: 20390130 [TBL] [Abstract][Full Text] [Related]
17. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Furdui VI; Harrison DJ Lab Chip; 2004 Dec; 4(6):614-8. PubMed ID: 15570374 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic stickers for cell- and tissue-based assays in microchannels. Morel M; Bartolo D; Galas JC; Dahan M; Studer V Lab Chip; 2009 Apr; 9(7):1011-3. PubMed ID: 19294316 [TBL] [Abstract][Full Text] [Related]
19. DC-Dielectrophoretic separation of biological cells by size. Kang Y; Li D; Kalams SA; Eid JE Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]