These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 17103227)
1. Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. elongatum aneuploids under salt stress. Mullan DJ; Colmer TD; Francki MG Mol Genet Genomics; 2007 Feb; 277(2):199-212. PubMed ID: 17103227 [TBL] [Abstract][Full Text] [Related]
2. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Huang S; Spielmeyer W; Lagudah ES; Munns R J Exp Bot; 2008; 59(4):927-37. PubMed ID: 18325922 [TBL] [Abstract][Full Text] [Related]
3. Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium 'exclusion' during salinity stress. Mullan DJ; Mirzaghaderi G; Walker E; Colmer TD; Francki MG Theor Appl Genet; 2009 Nov; 119(7):1313-23. PubMed ID: 19727655 [TBL] [Abstract][Full Text] [Related]
4. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Mullan DJ; Platteter A; Teakle NL; Appels R; Colmer TD; Anderson JM; Francki MG Genome; 2005 Oct; 48(5):811-22. PubMed ID: 16391687 [TBL] [Abstract][Full Text] [Related]
5. Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum. Hussein Z; Dryanova A; Maret D; Gulick PJ Plant Cell Rep; 2014 Jan; 33(1):189-201. PubMed ID: 24141639 [TBL] [Abstract][Full Text] [Related]
6. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. La Rota M; Sorrells ME Funct Integr Genomics; 2004 Mar; 4(1):34-46. PubMed ID: 14740255 [TBL] [Abstract][Full Text] [Related]
7. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat. Byrt CS; Xu B; Krishnan M; Lightfoot DJ; Athman A; Jacobs AK; Watson-Haigh NS; Plett D; Munns R; Tester M; Gilliham M Plant J; 2014 Nov; 80(3):516-26. PubMed ID: 25158883 [TBL] [Abstract][Full Text] [Related]
8. Use of wild relatives to improve salt tolerance in wheat. Colmer TD; Flowers TJ; Munns R J Exp Bot; 2006; 57(5):1059-78. PubMed ID: 16513812 [TBL] [Abstract][Full Text] [Related]
9. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Cuin TA; Bose J; Stefano G; Jha D; Tester M; Mancuso S; Shabala S Plant Cell Environ; 2011 Jun; 34(6):947-961. PubMed ID: 21342209 [TBL] [Abstract][Full Text] [Related]
10. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. Ariyarathna HA; Oldach KH; Francki MG BMC Plant Biol; 2016 Jan; 16():21. PubMed ID: 26786911 [TBL] [Abstract][Full Text] [Related]
11. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. Ishikawa G; Yonemaru J; Saito M; Nakamura T BMC Genomics; 2007 May; 8():135. PubMed ID: 17535443 [TBL] [Abstract][Full Text] [Related]
12. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Huang S; Spielmeyer W; Lagudah ES; James RA; Platten JD; Dennis ES; Munns R Plant Physiol; 2006 Dec; 142(4):1718-27. PubMed ID: 17071645 [TBL] [Abstract][Full Text] [Related]
13. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L. genomes. Zhong GY; Dvorak J Theor Appl Genet; 1995 Feb; 90(2):229-36. PubMed ID: 24173895 [TBL] [Abstract][Full Text] [Related]
14. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. James RA; Blake C; Byrt CS; Munns R J Exp Bot; 2011 May; 62(8):2939-47. PubMed ID: 21357768 [TBL] [Abstract][Full Text] [Related]
15. Introgression of perennial growth habit from Lophopyrum elongatum into wheat. Abbasi J; Xu J; Dehghani H; Luo MC; Deal KR; McGuire PE; Dvorak J Theor Appl Genet; 2020 Sep; 133(9):2545-2554. PubMed ID: 32494869 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. Boutrot F; Chantret N; Gautier MF BMC Genomics; 2008 Feb; 9():86. PubMed ID: 18291034 [TBL] [Abstract][Full Text] [Related]
17. Functional study of a salt-inducible TaSR gene in Triticum aestivum. Ma XL; Cui WN; Zhao Q; Zhao J; Hou XN; Li DY; Chen ZL; Shen YZ; Huang ZJ Physiol Plant; 2016 Jan; 156(1):40-53. PubMed ID: 25855206 [TBL] [Abstract][Full Text] [Related]
18. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Brini F; Gaxiola RA; Berkowitz GA; Masmoudi K Plant Physiol Biochem; 2005 Apr; 43(4):347-54. PubMed ID: 15907686 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Two HKT1;4 Transporters from Triticum monococcum to Elucidate the Determinants of the Wheat Salt Tolerance Nax1 QTL. Tounsi S; Ben Amar S; Masmoudi K; Sentenac H; Brini F; Véry AA Plant Cell Physiol; 2016 Oct; 57(10):2047-2057. PubMed ID: 27440547 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide introgression from a bread wheat × Lophopyrum elongatum amphiploid into wheat. Xu J; Wang L; Deal KR; Zhu T; Ramasamy RK; Luo MC; Malvick J; You FM; McGuire PE; Dvorak J Theor Appl Genet; 2020 Apr; 133(4):1227-1241. PubMed ID: 31980837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]