BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 17103389)

  • 21. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes.
    Shin JW; Lee YH; Hwang S; Lee SW
    J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclohexanyl peptide nucleic acids (chPNAs) for preferential RNA binding: effective tuning of dihedral angle beta in PNAs for DNA/RNA discrimination.
    Govindaraju T; Madhuri V; Kumar VA; Ganesh KN
    J Org Chem; 2006 Jan; 71(1):14-21. PubMed ID: 16388612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability and transformations of bis-PNA/DNA triplex structural isomers.
    Krupnik OV; Fadeeva NV; Kvitko N; Shepelev VA; Nielsen PE; Lazurkin YS
    J Biomol Struct Dyn; 2004 Feb; 21(4):503-12. PubMed ID: 14692795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [PNA-DNA triplexes: stability and specificity].
    Krupnik OL; Lazurkin IuS
    Genetika; 2005 Jul; 41(7):869-83. PubMed ID: 16152791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PNA-nitrogen mustard conjugates are effective suppressors of HER-2/neu and biological tools for recognition of PNA/DNA interactions.
    Zhilina ZV; Ziemba AJ; Nielsen PE; Ebbinghaus SW
    Bioconjug Chem; 2006; 17(1):214-22. PubMed ID: 16417271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison between solution-phase stability and gas-phase kinetic stability of oligodeoxynucleotide duplexes.
    Gabelica V; Pauw ED
    J Mass Spectrom; 2001 Apr; 36(4):397-402. PubMed ID: 11333443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Ziehe M; Grossmann TN; Seitz O; Linscheid MW
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1132-8. PubMed ID: 19280610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Introduction of disulfide bond to the main chain of PNA to switch its hybridization and invasion activity.
    Aiba Y; Komiyama M
    Org Biomol Chem; 2009 Dec; 7(24):5078-83. PubMed ID: 20024101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal Coordination to Ligand-Modified Peptide Nucleic Acid Triplexes.
    Jayarathna DR; Stout HD; Achim C
    Inorg Chem; 2018 Jun; 57(12):6865-6872. PubMed ID: 29845860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational procedures to explain the different biological activity of DNA/DNA, DNA/PNA and PNA/PNA hybrid molecules mimicking NF-kappaB binding sites.
    Saviano M; Romanelli A; Bucci E; Pedone C; Mischiati C; Bianchi N; Feriotto G; Borgatti M; Gambari R
    J Biomol Struct Dyn; 2000 Dec; 18(3):353-62. PubMed ID: 11149512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of peptide nucleic acid towards development of nanobiosensor arrays.
    Singh RP; Oh BK; Choi JW
    Bioelectrochemistry; 2010 Oct; 79(2):153-61. PubMed ID: 20356802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance.
    Polfer NC; Oomens J
    Mass Spectrom Rev; 2009; 28(3):468-94. PubMed ID: 19241457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.
    Brahim B; Tabet JC; Alves S
    Eur J Mass Spectrom (Chichester); 2018 Feb; 24(1):168-177. PubMed ID: 29232990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of nucleic acid higher order structure by gas-phase H/D exchange in a quadrupole-FT-ICR mass spectrometer.
    Mo J; Todd GC; HÃ¥kansson K
    Biopolymers; 2009 Apr; 91(4):256-64. PubMed ID: 19140156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical evidence that a D-loop is part of a four-stranded PNA-DNA bundle. Nickel-mediated cleavage of duplex DNA by a Gly-Gly-His bis-PNA.
    Footer M; Egholm M; Kron S; Coull JM; Matsudaira P
    Biochemistry; 1996 Aug; 35(33):10673-9. PubMed ID: 8718856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PNA-DNA duplexes, triplexes, and quadruplexes are stabilized with trans-cyclopentane units.
    Englund EA; Xu Q; Witschi MA; Appella DH
    J Am Chem Soc; 2006 Dec; 128(51):16456-7. PubMed ID: 17177367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fast flow tube study of gas phase H/D exchange of multiply protonated ubiquitin.
    Geller O; Lifshitz C
    J Phys Chem A; 2005 Mar; 109(10):2217-22. PubMed ID: 16838993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras.
    Petraccone L; Pagano B; Esposito V; Randazzo A; Piccialli G; Barone G; Mattia CA; Giancola C
    J Am Chem Soc; 2005 Nov; 127(46):16215-23. PubMed ID: 16287312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3+1) PNA-DNA bimolecular quadruplex.
    Paul A; Sengupta P; Krishnan Y; Ladame S
    Chemistry; 2008; 14(28):8682-9. PubMed ID: 18668497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.