BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17103420)

  • 1. Pressure stability of the alpha-helix structure in a de novo designed protein (alpha-l-alpha)(2) studied by FTIR spectroscopy.
    Takekiyo T; Takeda N; Isogai Y; Kato M; Taniguchi Y
    Biopolymers; 2007 Feb; 85(2):185-8. PubMed ID: 17103420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of the PsbQ protein of photosystem II by Fourier transform infrared and circular dichroic spectroscopy and by bioinformatic methods.
    Balsera M; Arellano JB; Gutiérrez JR; Heredia P; Revuelta JL; De Las Rivas J
    Biochemistry; 2003 Feb; 42(4):1000-7. PubMed ID: 12549920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study.
    Imamura H; Kato M
    Proteins; 2009 Jun; 75(4):911-8. PubMed ID: 19089951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR spectroscopy of alanine-based peptides: assignment of the amide I' modes for random coil and helix.
    Martinez G; Millhauser G
    J Struct Biol; 1995; 114(1):23-7. PubMed ID: 7772415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FTIR study on heat-induced and pressure-assisted cold-induced changes in structure of bovine alpha-lactalbumin: stabilizing role of calcium ion.
    Dzwolak W; Kato M; Shimizu A; Taniguchi Y
    Biopolymers; 2001; 62(1):29-39. PubMed ID: 11135190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the structural stability and cooperativity between monomeric variants of natural and de novo Cro proteins revealed by high-pressure Fourier transform infrared spectroscopy.
    Imamura H; Isogai Y; Kato M
    Biochemistry; 2012 May; 51(17):3539-46. PubMed ID: 22482462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tertiary structure changes in albumin upon surface adsorption observed via fourier transform infrared spectroscopy.
    Smith JR; Cicerone MT; Meuse CW
    Langmuir; 2009 Apr; 25(8):4571-8. PubMed ID: 19366224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic core malleability of a de novo designed three-helix bundle protein.
    Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF
    J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IR spectroscopy of isotope-labeled helical peptides: probing the effect of N-acetylation on helix stability.
    Decatur SM
    Biopolymers; 2000 Sep; 54(3):180-5. PubMed ID: 10861379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A designed cavity in the hydrophobic core of a four-alpha-helix bundle improves volatile anesthetic binding affinity.
    Johansson JS; Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Feb; 37(5):1421-9. PubMed ID: 9477971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of the volatile anesthetic halothane to the hydrophobic core of a tetra-alpha-helix-bundle protein.
    Johansson JS; Rabanal F; Dutton PL
    J Pharmacol Exp Ther; 1996 Oct; 279(1):56-61. PubMed ID: 8858975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules.
    Seo ES; Sherman JC
    Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding a de novo designed peptide into an alpha-helix through hydrophobic binding by a bowl-shaped host.
    Tashiro S; Tominaga M; Yamaguchi Y; Kato K; Fujita M
    Angew Chem Int Ed Engl; 2005 Dec; 45(2):241-4. PubMed ID: 16312001
    [No Abstract]   [Full Text] [Related]  

  • 15. Alpha-helical assembly of biologically active peptides and designed helix bundle protein.
    Morii H; Honda S; Ohashi S; Uedaira H
    Biopolymers; 1994 Apr; 34(4):481-8. PubMed ID: 8186361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized ATR-FTIR spectroscopy of the membrane-embedded domains of the particulate methane monooxygenase.
    Vinchurkar MS; Chen KH; Yu SS; Kuo SJ; Chiu HC; Chien SH; Chan SI
    Biochemistry; 2004 Oct; 43(42):13283-92. PubMed ID: 15491135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urea denaturation of staphylococcal nuclease monitored by Fourier transform infrared spectroscopy.
    From NB; Bowler BE
    Biochemistry; 1998 Feb; 37(6):1623-31. PubMed ID: 9484233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design, synthesis, and characterization of quinoproteins.
    Li WW; Hellwig P; Ritter M; Haehnel W
    Chemistry; 2006 Sep; 12(27):7236-45. PubMed ID: 16819733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fluorous effect in proteins: properties of alpha4F6, a 4-alpha-helix bundle protein with a fluorocarbon core.
    Gottler LM; de la Salud-Bea R; Marsh EN
    Biochemistry; 2008 Apr; 47(15):4484-90. PubMed ID: 18361500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure affects the structure and the dynamics of the D-galactose/D-glucose-binding protein from Escherichia coli by perturbing the C-terminal domain of the protein.
    Marabotti A; Ausili A; Staiano M; Scirè A; Tanfani F; Parracino A; Varriale A; Rossi M; D'Auria S
    Biochemistry; 2006 Oct; 45(39):11885-94. PubMed ID: 17002289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.